Skip to main content

Cardiodiabetology: Reducing Risks to Optimize Cardiovascular Disease Outcomes

  • Chapter
  • First Online:
ASPC Manual of Preventive Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 749 Accesses

Abstract

Nearly 500 million adults worldwide currently have diabetes, a number expected to increase to 700 million over the next 25 years, largely fueled by the obesity epidemic and unhealthy lifestyles. Atherosclerotic cardiovascular disease (ASCVD), including coronary heart disease, stroke, heart failure, and peripheral arterial disease, is among the most common causes of death in persons with diabetes. However, diabetes is associated with great heterogeneity in ASCVD risks, warranting the need for cardiovascular risk assessment, including global risk scoring and consideration of risk-enhancing factors and subclinical atherosclerosis. Moreover, few persons with diabetes are at recommended targets for key ASCVD risk factors including LDL-cholesterol, blood pressure, HbA1c, nonsmoking status, and body mass index. Key treatment approaches focus on lifestyle modification, weight control, avoidance of cigarette smoking, and management of lipids, blood pressure, and blood glucose. For higher-risk patients, antiplatelet therapy is included. Blood pressure medication, statins, and, most recently, icosapent ethyl, have evidence for reducing ASCVD events in persons with diabetes. Newer medications for diabetes, including SGLT2 inhibitors and GLP-1 receptor agonists, also reduce cardiovascular events independent of level of HbA1c. Both classes prevent further kidney function deterioration while the SGLT2 inhibitors also reduce heart failure hospitalizations. Most importantly, a multidisciplinary team is required to address the myriad cardiovascular and other risks in persons with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 2019 International Diabetes Federation Atlas. https://www.diabetesatlas.org/upload/resources/material/20200106_152211_IDFATLAS9e-final-web.pdf.

  2. Geiss LS, Herman WH, Smith PJ. Mortality in non-insulin-dependent diabetes. In: Diabetes in America. 2nd ed. Bethesda: National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; 1995:233-257. NIH Publication No. 95-1468.

    Google Scholar 

  3. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  CAS  Google Scholar 

  4. Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conaway DG, O’Keefe JH. Frequency of undiagnosed and untreated diabetes mellitus in patients with acute coronary syndromes. Expert Rev Cardiovasc Ther. 2006;4(4):503–7.

    Article  CAS  PubMed  Google Scholar 

  6. Conaway DG, O’Keefe JH, Reid KJ, Spertus J. Frequency of undiagnosed diabetes mellitus in patients with acute coronary syndrome. Am J Cardiol. 2005;96(3):363–5.

    Article  PubMed  Google Scholar 

  7. Anselmino M, Mellbin L, Wallander M, Rydén L. Early detection and integrated management of dysglycemia in cardiovascular disease: a key factor for decreasing the likelihood of future events. Rev Cardiovasc Med. 2008;9(1):29–38.

    PubMed  Google Scholar 

  8. Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245–50.

    Article  PubMed  Google Scholar 

  9. Wilson PW. Diabetes mellitus and coronary heart disease. Endocrinol Metab Clin N Am. 2001;30(4):857–81.

    Article  CAS  Google Scholar 

  10. Foley RN, Murray AM, Li S, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16(2):489–95.

    Article  PubMed  Google Scholar 

  11. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  12. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.

    Google Scholar 

  13. Bulugahapitiya U, Siyambalapitiya S, Sithole J, Idris I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009;26:142–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wong ND, Glovaci D, Wong K, Malik S, Franklin SS, Wygant G, Iloeje U. Global cardiovascular disease risk assessment in United States adults with diabetes. Diab Vasc Dis Res. 2012;9(2):146–52.

    Article  PubMed  Google Scholar 

  15. Malik S, Budoff MJ, Katz R, et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care. 2011;34(10):2285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rana JS, Liu JY, Moffet HH, Jaffe M, Karter AJ. Diabetes and prior coronary heart disease are not necessarily risk equivalent for future coronary heart disease events. J Gen Intern Med. 2016;31(4):387–93.

    Article  PubMed  Google Scholar 

  17. Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316(7134):823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biondi-Zoccai GG, Abbate A, Liuzzo G, Biasucci LM. Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol. 2003;41(7):1071–7.

    Article  CAS  PubMed  Google Scholar 

  19. Pyorala K, De Backer G, Graham I, Poole-Wilson P, Wood D. Prevention of coronary heart disease in clinical practice. Recommendations of the Task Force of the European Society of Cardiology, European Atherosclerosis Society and European Society of Hypertension. Eur Heart J. 1994;15:1300–31.

    CAS  PubMed  Google Scholar 

  20. Rawshani A, Rawshani A, Franzén S, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–44.

    Article  PubMed  Google Scholar 

  21. Rawshani A, Rawshani A, Sattar N, et al. Relative prognostic importance and optimal levels of risk factors for mortality and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2019;139(16):1900–12.

    Article  PubMed  Google Scholar 

  22. Suh DC, Choi IS, Plauschinat C, Kwon J, Baron M. Impact of comorbid conditions and race/ethnicity on glycemic control among the US population with type 2 diabetes, 1988–1994 to 1999–2004. J Diabetes Complicat. 2010;24(6):382–91.

    Article  Google Scholar 

  23. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44.

    Article  CAS  PubMed  Google Scholar 

  24. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APHA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines [Published correction appears in J Am Coll Cardiol. 2019;73(24):3237–3241]. J Am Coll Cardiol. 2019;73(24):e285–350.

    Article  PubMed  Google Scholar 

  25. Stevens RJ, Kothari V, Adler AI, Stratton IM, United Kingdom Prospective Diabetes Study (UKPDS) Group. The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci (Lond). 2001;101(6):671–9.

    Article  CAS  Google Scholar 

  26. Basu S, Sussman JB, Berkowitz SA, Hayward RA, Yudkin JS. Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. 2017;5:788–98.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fan W, Song Y, Inzucchi SE, et al. Composite cardiovascular risk factor target achievement and its predictors in US adults with diabetes: the Diabetes Collaborative Registry. Diabetes Obes Metab. 2019;21(5):1121–7.

    Article  CAS  PubMed  Google Scholar 

  28. Andary R, Fan W, Wong ND. Control of cardiovascular risk factors among US adults with type 2 diabetes with and without cardiovascular disease. Am J Cardiol. 2019;124(4):522–7.

    Article  PubMed  Google Scholar 

  29. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  30. Gæde P, Oellgaard J, Carstensen B, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59(11):2298–307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bittner V, Bertolet M, Barraza Felix R, et al. Comprehensive cardiovascular risk factor control improves survival: the BARI 2D Trial. J Am Coll Cardiol. 2015;66(7):765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wong ND, Zhao Y, Patel R, et al. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: a pooling project of the atherosclerosis risk in communities study, multi-ethnic study of atherosclerosis, and Jackson Heart Study. Diabetes Care. 2016;39(5):668–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  34. Look AHEAD Research Group, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes [Published correction appears in N Engl J Med. 2014 May 8;370(19):1866]. N Engl J Med. 2013;369(2):145–54.

    CAS  Google Scholar 

  35. Estruch R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Article  CAS  PubMed  Google Scholar 

  36. Case CC, Jones PH, Nelson K, O’Brian Smith E, Ballantyne CM. Impact of weight loss on the metabolic syndrome. Diabetes Obes Metab. 2002;4(6):407–14.

    Article  CAS  PubMed  Google Scholar 

  37. Eckel RH, Jakacic JM, de Jesus JM, et al. 2013 AHA/ACC Guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2960–84.

    Article  PubMed  Google Scholar 

  38. Fiore MC, Jaén CR, Baker TB, et al. Treating tobacco use and dependence: 2008 update. Quick reference guide for clinicians. Rockville: U.S. Department of Health and Human Services. Public Health Service; 2009.

    Google Scholar 

  39. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. Br Med J. 1998;317:713–20.

    Google Scholar 

  40. ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Article  CAS  Google Scholar 

  41. Buckley LF, Dixon DL, Wohlford GF 4th, Wijesinghe DS, Baker WL, Van Tassell BW. Intensive versus standard blood pressure control in SPRINT-eligible participants of ACCORD-BP [Published correction appears in Diabetes Care. 2018; 41(9):2048]. Diabetes Care. 2017;40(12):1733–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.

    Article  PubMed  Google Scholar 

  43. Sakima A, Satonaka H, Nishida N, Yatsu K, Arima H. Optimal blood pressure targets for patients with hypertension: a systematic review and meta-analysis. Hypertens Res. 2019;42(4):483–95.

    Article  PubMed  Google Scholar 

  44. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [Published correction appears in J Am Coll Cardiol. 2018 May 15;71(19):2275–2279]. J Am Coll Cardiol. 2018;71(19):e127–248.

    Article  PubMed  Google Scholar 

  45. Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Article  CAS  Google Scholar 

  46. Lee M, Saver JL, Towfighi A, Chow J, Ovbiagele B. Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis. 2011;217(2):492–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jellinger PS, Handelsman Y, Rosenblit PD, et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017;23(Suppl 2):1–87.

    Article  PubMed  Google Scholar 

  48. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    Article  CAS  PubMed  Google Scholar 

  49. Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–50.

    Article  CAS  PubMed  Google Scholar 

  50. Giugliano RP, Cannon CP, Blazing MA, et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved reduction of outcomes: vytorin efficacy international trial). Circulation. 2018;137(15):1571–82.

    Article  CAS  PubMed  Google Scholar 

  51. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  52. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.

    Article  PubMed  Google Scholar 

  53. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S111–34. https://doi.org/10.2337/dc20-S010.

    Article  Google Scholar 

  54. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65.

    Google Scholar 

  56. ACCORD Study Group, Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, Grimm RH Jr, Byington RP, Rosenberg YD, Friedewald WT. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.

    Article  Google Scholar 

  57. ADVANCE Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  58. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes [Published correction appears in N Engl J Med. 2009;361(10):1028].

    Google Scholar 

  59. Dormandy JA, Charbonnel B, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2008;366(9493):1279–89.

    Article  CAS  Google Scholar 

  60. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72.

    Article  CAS  PubMed  Google Scholar 

  61. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  CAS  PubMed  Google Scholar 

  62. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  CAS  PubMed  Google Scholar 

  63. Food and Drug Administration. 2008. Guidance for industry. Diabetes mellitus — evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Food and Drug Administration website. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM071627.pdf. Last accessed: 4 May 2016.

  64. Paneni F, Lüscher TF. Cardiovascular protection in the treatment of type 2 diabetes: a review of clinical trial results across drug classes. Am J Cardiol. 2017;120(1S):S17–27.

    Article  CAS  PubMed  Google Scholar 

  65. Das SR, Everett BM, Birtcher KK, et al. 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020;76(9):1117–45. https://doi.org/10.1016/j.jacc.2020.05.037.

  66. Zinman B, Wanner C, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  67. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  68. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials [Published correction appears in Lancet. 2019;393(10166):30]. Lancet. 2019;393(10166):31–9.

    Article  CAS  PubMed  Google Scholar 

  69. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  71. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381(9):841–51.

    Article  CAS  PubMed  Google Scholar 

  72. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  73. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  74. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98–S110.

    Article  Google Scholar 

  75. Garber AJ, Handelsman Y, Grunberger G, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr Pract. 2020;26(1):107–39.

    Article  PubMed  Google Scholar 

  76. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines [Published correction appears in J Am Coll Cardiol. 2019 Sep 10;74(10):1428-1429] [Published correction appears in J Am Coll Cardiol. 2020 Feb 25;75(7):840]. J Am Coll Cardiol. 2019;74(10):1376–414.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Steering Committee of the Physicians’ Health Study Research Group. Final report on the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med. 1989;321:129–35.

    Article  Google Scholar 

  78. Aspirin effects on mortality and morbidity in patients with diabetes mellitus. Early treatment diabetic retinopathy study report 14. ETDRS Investigators. JAMA. 1992;268(10):1292–300. https://doi.org/10.1001/jama.1992.03490100090033.

  79. Collaborative overview of randomised trials of antiplatelet therapy – I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists’ Collaboration [Published correction appears in BMJ 1994 Jun 11;308(6943):1540]. Br Med J. 1994;308(6921):81–106.

    Google Scholar 

  80. Harpaz D, Gottlieb S, Graff E, Boyko V, Kishon Y, Behar S. Effects of aspirin treatment on survival in non-insulin-dependent diabetic patients with coronary artery disease. Israeli Bezafibrate Infarction Prevention Study Group. Am J Med. 1998;105(6):494–9.

    Article  CAS  PubMed  Google Scholar 

  81. Sacco M, Pellegrini F, Roncaglioni MC, et al. Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care. 2003;26(12):3264–72.

    Article  CAS  PubMed  Google Scholar 

  82. Belch J, MacCuish A, Campbell I, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ogawa H, Nakayama M, Morimoto T, et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2008;300(18):2134–41.

    Article  CAS  PubMed  Google Scholar 

  84. ASCEND Study Collaborative Group. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018;379(16):1529–39.

    Article  Google Scholar 

  85. Rosenblit PD, Lepor NE, Wong ND. The emergence of cardiodiabetology. Cardiovasc Endocrinol. 2017;6(1):3–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, N.D., Handelsman, Y. (2021). Cardiodiabetology: Reducing Risks to Optimize Cardiovascular Disease Outcomes. In: Wong, N.D., Amsterdam, E.A., Toth, P.P. (eds) ASPC Manual of Preventive Cardiology. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-56279-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56279-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56278-6

  • Online ISBN: 978-3-030-56279-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics