Spatializing Symbolic Structures for the Gap

  • Tiansi DongEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 910)


The function of the mind consists of two different types, namely, System 1 and System 2 (Kahneman in Thinking, fast and slow. Allen Lane, Penguin Books, 2011). The basic function of System 1 (fast thinking) is associative activation.


  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modelling multi-relational data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 26, pp. 2787–2795). Curran Associates, Inc.Google Scholar
  2. Byrne, R. W. (1979). Memory for urban geography. Quarterly Journal of Experimental Psychology, 31, 147–154.CrossRefGoogle Scholar
  3. Dinsmore, J. (1992). Thunder in the gap. In The symbolic and connectionist paradigms: Closing the gap (pp. 1–23). Hillsdale, NJ: Erlbaum.Google Scholar
  4. Dong, T., Wang, Z., Li, J., Bauckhage, C., & Cremers, A. B. (2019a). Triple classification using regions and fine-grained entity typing. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), (pp. 77–85), Honolulu, Hawaii, USA, 27 January–1 February 2019.Google Scholar
  5. Dong, T., Bauckhage, C., Jin, H., Li, J., Cremers, O. H., Speicher, D., Cremers, A. B., & Zimmermann, J. (2019b). Imposing category trees onto word-embeddings using a geometric construction. In ICLR-19, New Orleans, USA. 6-9 May 2019.Google Scholar
  6. Dreyfus, H. L., Dreyfus, S. E., & Athanasiou, T. (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York, NY, USA: The Free Press.Google Scholar
  7. Dyer, M. G. (1988). The promise and problems of connectionism. Behavioral and Brain Sciences, 1, 32–33.CrossRefGoogle Scholar
  8. Erk, K. (2009). Supporting inferences in semantic space: Representing words as regions. In IWCS-8’09 (pp. 104–115). Stroudsburg, PA, USA: Association for Computational Linguistics.Google Scholar
  9. Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2015). Retrofitting word vectors to semantic lexicons. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1606–1615). ACL.Google Scholar
  10. Feldman, J. (2006). From molecule to metaphor: A neural theory of language. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  11. Fu, R., Guo, J., Qin, B., Che, W., Wang, H., & Liu, T. (2015). Learning semantic hierarchies: A continuous vector space approach. Transactions on Audio, Speech, and Language Processing, 23(3), 461–471.Google Scholar
  12. Gärdenfors, P. (2000). Conceptual spaces—The geometry of thought. Cambridge, MA, USA: MIT Press.CrossRefGoogle Scholar
  13. Grady, J. (1997). Foundations of meaning: Primary metaphors and primary scenes, University Microfilms.Google Scholar
  14. Harnad, S. (1990). The symbol grounding problem. Physics D, 42(1–3), 335–346.CrossRefGoogle Scholar
  15. Harnad, S. (2003). The symbol grounding problem. In Encyclopedia of cognitive science. Nature Publishing Group/Macmillan.Google Scholar
  16. Hristov, Y., Penkov, S., Lascarides, A., & Ramamoorthy, S. (2017). Grounding symbols in multi-modal instructions. In Proceedings of the First Workshop on Language Grounding for Robotics (pp. 49–57). Vancouver, Canada: Association for Computational Linguistics.Google Scholar
  17. Ji, G., He, S., Xu, L., Liu, K., & Zhao, J. (2015). Knowledge graph embedding via dynamic mapping matrix. In ACL’2015 (pp. 687–696). Beijing: ACL.Google Scholar
  18. Kahneman, D. (2011). Thinking, fast and slow. Allen Lane, Penguin Books. Nobel laureate in Economics in 2002.Google Scholar
  19. Lakoff, G., & Johnson, M. (1980). Metaphors We live by. Chicago: The University of Chicago Press. Citation is based on the reprinted in 2003.Google Scholar
  20. Li, X., Vilnis, L., Zhang, D., Boratko, M., & McCallum, A. (2019). Smoothing the geometry of box embeddings. In International Conference on Learning Representations (ICLR).Google Scholar
  21. Lin, Y., Liu, Z., Sun, M., Liu, Y., & Zhu, X. (2015). Learning entity and relation embeddings for knowledge graph completion. In AAAI’15 (pp. 2181–2187). AAAI Press.Google Scholar
  22. McNamara, T. P. (1991). Memory’s view of space. The Psychology of Learning and Motivation, 27, 147–186.CrossRefGoogle Scholar
  23. Quillian, M. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing. Cambridge, MA: MIT Press.Google Scholar
  24. Regier, T. (1997). The human semantic potential: Spatial language and constrained connectionism. Cambridge, MA: The MIT Press.Google Scholar
  25. Steels, L. (2008). The symbol grounding problem has been solved. So what’s next. In Symbols and embodiment: Debates on meaning and cognition (pp. 223–244). New Orleans, USA: Oxford University Press.Google Scholar
  26. Stevens, A., & Coupe, P. (1978). Distance estimation from cognitive maps. Cognitive Psychology, 13, 526–550.Google Scholar
  27. Sun, R. (2015). Artificial intelligence: Connectionist and symbolic approaches. In D. W. James (Ed.), International encyclopedia of the social and behavioral sciences (2nd ed., pp. 35–40). Oxford: Pergamon/Elsevier.CrossRefGoogle Scholar
  28. Sun, R. (2016). Implicit and explicit processes: Their relation, interaction, and competition. In L. Macchi, M. Bagassi, & R. Viale (Eds.), Cognitive unconscious and human rationality (pp. 27–257). Cambridge, MA: MIT Press.Google Scholar
  29. Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.CrossRefGoogle Scholar
  30. Tversky, B. (1992). Distortions in cognitive maps. Geoforum, 23(2), 131–138.CrossRefGoogle Scholar
  31. Tversky, B. (2019). Mind in motion. New York, USA: Basic Books.CrossRefGoogle Scholar
  32. Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes. In AAAI (pp. 1112–1119). AAAI Press.Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.ML2R Competence Center for Machine Learning Rhine-Ruhr, MLAI Lab, AI Foundations Group, Bonn-Aachen International Center for Information Technology (b-it)University of BonnBonnGermany

Personalised recommendations