Advertisement

The Gap Between Symbolic and Connectionist Approaches

  • Tiansi DongEmail author
Chapter
  • 271 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 910)

Abstract

For  symbolists, the way of thinking can be fully symbolically simulated without biological embodiment. For connectionists, biological embodiment is a must, and they use connectionist networks for embodiments.

References

  1. Adams, F., Aizawa, K., & Fuller, G. (1992). Rules in programming languages and networks. In The symbolic and connectionist paradigms: Closing the gap (pp. 49–68). Hillsdale NJ: Erlbaum.Google Scholar
  2. Adamson, M. J., & Damper, R. I. (1999). B-RAAM: A connectionist model which develops holistic internal representations of symbolic structures. Connection Science, 11(1), 41–71.CrossRefGoogle Scholar
  3. Aizawa, K. (1992). Biology and sufficiency in connectionist theory. In The symbolic and connectionist paradigms: Closing the gap (pp. 69–88). Hillsdale, NJ: Erlbaum.Google Scholar
  4. Bader, S., Hitzler, P., Hölldobler, S., & Witzel, A. (2007). A fully connectionist model generator for covered first-order logic programs. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence (pp. 666–671), Hyderabad, India, 6–12 January 2007.Google Scholar
  5. Barlow, H. (1972). Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1, 371–394.CrossRefGoogle Scholar
  6. Bechtel, W., & Abrahamsen, A. (2002). Connectionism and the mind: Parallel processing, dynamics, and evolution in networks. Hong Kong: Graphicraft Ltd.Google Scholar
  7. Besold, T. R., d’Avila Garcez, A., & Lamb, L. C. (2017). Human-like neural-symbolic computing (Dagstuhl Seminar 17192). Dagstuhl Reports, 7(5), 56–83.Google Scholar
  8. Chalmers, D. J. (1992). Subsymbolic computation and the Chinese room. In The symbolic and connectionist paradigms: Closing the gap (pp. 25–48). Hillsdale, NJ: Erlbaum.Google Scholar
  9. Clarke, B. L. (1981). A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic, 23(3), 204–218.MathSciNetCrossRefGoogle Scholar
  10. Clarke, B. L. (1985). Individuals and points. Notre Dame Journal of Formal Logic, 26(1), 61–75.MathSciNetCrossRefGoogle Scholar
  11. Dinsmore, J. (1992). Thunder in the gap. In The symbolic and connectionist paradigms: Closing the gap (pp. 1–23). Erlbaum.Google Scholar
  12. Dong, T. (2007). The nine comments on the RCC theory. AAAI’07 Workshop on Spatial and Temporal Reasoning (pp. 16–20). Canada: Vancouver.Google Scholar
  13. Dong, T. (2008). A comment on RCC: From RCC to RCC++. Journal of Philosophical Logic, 37(4), 319–352.MathSciNetCrossRefGoogle Scholar
  14. Dong, T. (2012). Recognizing variable environments—The theory of cognitive prism, volume 388 of Studies in computational intelligence. Berlin, Heidelberg: Springer.Google Scholar
  15. Dong, T., & Guesgen, H. (2007). Is an orientation relation a distance comparison relation? In IJCAI’07 Workshop on Spatial and Temporal Reasoning (pp. 45–51), Hyderabad, India.Google Scholar
  16. Dyer, M. G. (1988). The promise and problems of connectionism. Behavioral and Brain Sciences, 1, 32–33.CrossRefGoogle Scholar
  17. Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture—A critical analysis. Cognition, 28(1–2), 3–71.CrossRefGoogle Scholar
  18. Frank, A. (1991). Qualitative spatial reasoning with cardinal directions. In Proceedings of the Seventh Austrian Conference on Artificial Intelligence (pp. 157–167). Berlin, Wien: Springer.Google Scholar
  19. Frank, A. (1992). Qualitative spatial reasoning about distances and orientations in geographic space. Journal of Visual Language and Computing, 3, 343–371.CrossRefGoogle Scholar
  20. Freeman, W. J. (1988). Dynamic systems and the “subsymbolic level”. Behavioral and Brain Sciences, 1, 33–34.CrossRefGoogle Scholar
  21. Freksa, C. (1992). Using orientation information for qualitative spatial reasoning. In Proceedings of the International Conference GIS-From Space to Territory: Theories and Methods of Spatial-Temporal Reasoning, LNCS. Pisa: Springer.Google Scholar
  22. Giles, C. L. and Gori, M. (Eds.). (1998). Adaptive processing of sequences and data structures, international summer school on neural networks, “E.R. Caianiello”—Tutorial lectures, London, UK, UK: Springer.Google Scholar
  23. Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. In G. E. Hinton & J. A. Anderson (Eds.), Parallel models of associative memory (pp. 161–187). Hillsdale, NJ: Erlbaum.Google Scholar
  24. Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive Science Society (Vol. 1, p. 12), Amherst, MA.Google Scholar
  25. Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks. Artificial Intelligence, 46(1–2), 47–75.CrossRefGoogle Scholar
  26. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.MathSciNetCrossRefGoogle Scholar
  27. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  28. Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73–193.Google Scholar
  29. Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1–2), 77–105.CrossRefGoogle Scholar
  30. Randell, D., Cui, Z., & Cohn, A. (1992). A spatial logic based on regions and connection. In B. Nebel, W. Swartout, & C. Rich (Eds.), Proceeding of the 3rd International Conference on Knowledge Representation and Reasoning (pp. 165–176). San Mateo: Morgan Kaufmann.Google Scholar
  31. Renz, J., & Mitra, D. (2004). Qualitative direction calculi with arbitrary granularity. In C. Zhang, H. Guesgen, & W. Yeap (Eds.), PRICAI 2004: Trends in Artificial Intelligence: 8th Pacific Rim International Conference on Artificial Intelligence (pp. 65–74). Berlin, Heidelberg and New Zealand: Springer.Google Scholar
  32. Rosch, E. (1973). Natural categories. Cognitive Psychology, 3, 328–350.CrossRefGoogle Scholar
  33. Rumelhart, D. E., McClelland, J. L., & PDP Research Group (Eds.). (1986). Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT Press.Google Scholar
  34. Searle, J. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–457.CrossRefGoogle Scholar
  35. Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 1, 1–23.Google Scholar
  36. Sun, R. (2002). Hybrid connectionist symbolic systems. In M. Arbib (Ed.), Handbook of brain theories and neural networks (2nd ed., pp. 543–547). Cambridge, MA: MIT Press.Google Scholar
  37. Sun, R. (2016). Implicit and explicit processes: Their relation, interaction, and competition. In L. Macchi, M. Bagassi, & R. Viale (Eds.), Cognitive unconscious and human rationality (pp. 27–52). Cambridge, MA: MIT Press.Google Scholar
  38. Sun, R., & Alexandre, F. (Eds.). (1997). Connectionist-symbolic integration: From unified to hybrid approaches. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.Google Scholar
  39. Sun, R., & Bookman, L. A. (1994). Computational architectures integrating neural and symbolic processes: A perspective on the state of the art. Norwell, MA, USA: Kluwer Academic Publishers.CrossRefGoogle Scholar
  40. Sun, R., & Peterson, T. (1998). Autonomous learning of sequential tasks: Experiments and analyses. IEEE Transactions on Neural Networks, 9(6), 1217–1234.CrossRefGoogle Scholar
  41. Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–353.CrossRefGoogle Scholar
  42. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.CrossRefGoogle Scholar
  43. Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-holographic associative memory. Nature, 222, 960–962.CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.ML2R Competence Center for Machine Learning Rhine-Ruhr, MLAI Lab, AI Foundations Group, Bonn-Aachen International Center for Information Technology (b-it)University of BonnBonnGermany

Personalised recommendations