Skip to main content

Development of Additive Manufacturing Technology

  • Chapter
  • First Online:
Additive Manufacturing Technologies

Abstract

It is important to understand that AM was not developed in isolation from other technologies. It would not be possible for AM to exist were it not for innovations in areas like 3D graphics and Computer-Aided Design software. This chapter highlights some of the key moments that catalogue the development of Additive Manufacturing. It describes how the different technologies converged to a state where they could be integrated into AM machines. It will also discuss milestone AM technologies and how they have contributed to increase the range of AM applications. Furthermore, we will discuss how the application of Additive Manufacturing has evolved to include greater functionality and embrace a wider range of applications beyond the initial intent of prototyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuse Z3 Computer. (2020). http://www.zib.de/zuse

  2. Goldstine, H. H., & Goldstine, A. (1946). The electronic numerical integrator and computer (eniac). Mathematical Tables and Other Aids to Computation, 2(15), 97–110.

    Article  MathSciNet  Google Scholar 

  3. Wilkes, M. V., & Renwick, W. (1949). The EDSAC-an electronic calculating machine. Journal of Scientific Instruments, 26(12), 385.

    Article  MathSciNet  Google Scholar 

  4. Waterloo Computer Science Club. (2020). Talk by Bill Gates. http://csclub.uwaterloo.ca/media

  5. Gatlin, J. (1999). Bill Gates: The Path to the Future. Avon Books.

    Google Scholar 

  6. Piegl, L., & Tiller, W. (1997). The NURBS Book (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  7. Jamieson, R., & Hacker, H. (1995). Direct slicing of CAD models for rapid prototyping. Rapid Prototyping Journal, 1(2), 4–12.

    Article  Google Scholar 

  8. Roscoe, L. (1988). Stereolithography interface specification. America-3D Systems Inc, 27, 10.

    Google Scholar 

  9. Protoform. (2020). Space Puzzle Moulding. http://www.protoform.de

  10. HASCO. (2020) Precision for Mouldmaking. https://www.hasco.com/en/

  11. LiD. (2020). Architects. http://www.lid-architecture.net

  12. Burns, M. (1993). Automated fabrication: improving productivity in manufacturing. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  13. Kruth, J.-P., Leu, M.-C., & Nakagawa, T. (1998). Progress in additive manufacturing and rapid prototyping. CIRP Annals, 47(2), 525–540.

    Article  Google Scholar 

  14. Chua, C. K., & Leong, K. F. (1998). Rapid prototyping: principles and applications in manufacturing. New York: Wiley.

    Google Scholar 

  15. Chua, C. K., Leong, K. F., & Lim, C. S. (2003). Rapid prototyping: principles and applications. Vol. 1. Singapore: World Scientific.

    Book  Google Scholar 

  16. Pham, D. T., & Gault, R. S. (1998). A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture, 38(10–11), 1257–1287.

    Article  Google Scholar 

  17. MCor Technologies. (2020). http://www.mcortechnologies.com

  18. Fab@Home. (2020). http://www.fabathome.org

  19. RepRap. (2020). http://www.reprap.org

  20. Stratasys. (2020), 3D Printing & Additive Manufacturing, Stratasys. https://www.stratasys.com/

  21. Microtec. (2020). http://www.microtec-d.com

  22. 3D Systems, Stereolithography and selective laser sintering machines. (2020). http://www.3dsystems.com

  23. EOS. (2020). http://www.eos.info

  24. Sachs, E., et al. (1992). Three dimensional printing: Rapid tooling and prototypes directly from a CAD model. Journal of Engineering for Industry, 114(4), 481–488.

    Article  Google Scholar 

  25. ZCrop (3D Systems). (2020). http://www.zcorp.com

  26. Soligen. (2020). http://www.soligen.com

  27. Stratasys. (2020). http://www.stratasys.com

  28. Solidscape. (2020). http://www.solid-scape.com

  29. Kira. (2020). Solid Center machine. www.kiracorp.co.jp/EG/pro/rp/top.html

  30. Groza, J. R., & Shackelford, J. F. (2007). Materials processing handbook. Boca Raton: CRC Press.

    Book  Google Scholar 

  31. ASTM International. (2015). ISO/ASTM52900–15, standard terminology for additive manufacturing – general principles – terminology. West Conshohocken: ASTM International.

    Google Scholar 

  32. Wu, B., et al. (2018). A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. Journal of Manufacturing Processes, 35, 127–139.

    Article  Google Scholar 

  33. Atwood, C., et al. Laser engineered net shaping (LENSâ„¢): A tool for direct fabrication of metal parts. In International Congress on Applications of Lasers & Electro-Optics. 1998. LIA

    Google Scholar 

  34. Optomec, LENS process. (2020). http://www.optomec.com

  35. White, D. (2003). Ultrasonic object consolidation. US Patents.

    Google Scholar 

  36. Arcam. (2020). Electron Beam Melting. http://www.arcam.com

  37. Stratoconception, Thick layer hybrid AM. http://www.stratoconception.com

  38. Roland, SRP technology. (2020). http://www.rolanddga.com/solutions/rapidprototyping/

  39. Prinz, F. B., & Weiss, L. E. (1998). Novel applications and implementations of shape deposition manufacturing. Naval Research Reviews, 50, 19–26.

    Google Scholar 

  40. Phenix, Metal RP technology (Owned By 3D System). (2020). http://www.phenix-systems.com.

  41. Materialise. (2020). AM software systems and service provider. http://www.materialise.com.

  42. CMET. (2020). Stereolithography technology. http://www.cmet.co.jp

  43. America Makes – National Additive Manufacturing Innovation Institute. (2020). www.americamakes.us

  44. America Makes & ANSI Additive Manufacturing Standardization Collaborative, Standardization Roadmap for Additive Manufacturing, Version 2.0. (2018).

    Google Scholar 

  45. ASTM International. (2015). ISO/ASTM52915–16 Standard Specification for Additive Manufacturing File Format (AMF) Version 1.2. West Conshohocken: ASTM International.

    Google Scholar 

  46. ASTM International. (2016). ISO/ASTM52901–16 standard guide for additive manufacturing – general principles – requirements for purchased AM parts. West Conshohocken: ASTM International.

    Google Scholar 

  47. Hearing Aid. (2020). EnvisionTEC. https://envisiontec.com/

  48. 3D printing technology for improved hearing, Sonova. (2020). https://www.sonova.biz/en/features/3d-printing-technology-improved-hearing

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibson, I., Rosen, D., Stucker, B., Khorasani, M. (2021). Development of Additive Manufacturing Technology. In: Additive Manufacturing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-56127-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56127-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56126-0

  • Online ISBN: 978-3-030-56127-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics