Skip to main content

Materials for Additive Manufacturing

  • Chapter
  • First Online:
Additive Manufacturing Technologies

Abstract

Good materials are crucial for effective AM, and different processes require these materials to be prepared in different ways. Some AM processes are capable of processing a wider range of materials than others. In this chapter we look at metals, ceramics, polymers, and composites and in particular how they change throughout AM processing. Ceramics have not been dealt with widely in other chapters so we cover a range of ways in which we can produce ceramic parts using AM. We also discuss problems that may occur when using different AM materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourell, D., et al. (2017). Materials for additive manufacturing. CIRP Annals, 66(2), 659–681.

    Article  Google Scholar 

  2. Wohlers, T. (2018). Wohlers report. 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report. Wohlers Associates.

    Google Scholar 

  3. Wohlers, T. (2019). Wohlers report. 3D Printing and Additive Manufacturing State of the Industry. Wohlers Associates.

    Google Scholar 

  4. Wohlers, T. (2020). Wohlers report. 3D Printing and Additive Manufacturing Global State of the Industry. Wohlers Associates.

    Google Scholar 

  5. GE Additive. (2020). https://www.ge.com/additive/additive-manufacturing/information/metal-additive-manufacturing-materials

  6. ASTM International. (2015). SO/ASTM52900–15, standard terminology for additive manufacturing – general principles – terminology. West Conshohocken: ASTM International.

    Google Scholar 

  7. Ledesma-Fernandez, J., Tuck, C., & Hague, R. (2015). High viscosity jetting of conductive and dielectric pastes for printed electronics. In Proceedings of the International Solid Freeform Fabrication Symposium.

    Google Scholar 

  8. Valencia, J. J., & Quested, P. N. (2013). Thermophysical properties.

    Google Scholar 

  9. Mills, K. C. (2002). Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, Ohio USA.

    Google Scholar 

  10. Ngo, T. D., et al. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196.

    Article  Google Scholar 

  11. RepRap. (2020). https://www.3ders.org/articles/20181105-german-reprap-introduces-l280-first-liquid-additive-manufacturing-lam-production-ready-3d-printer.html

  12. Jacobs, P. F. (1995). Stereolithography and other RP&M technologies: From rapid prototyping to rapid tooling. New York: Society of Manufacturing Engineers.

    Google Scholar 

  13. Crivello, J., & Dietliker, K. (2013). Volume III: Photoinitiators for free radical cationic & anionic photopolymerisation. Chichester: Wiley.

    Google Scholar 

  14. Southwell, J., et al. (2013). Radiation curable resin composition and rapid three-dimensional imaging process using the same. US Patents.

    Google Scholar 

  15. Das, S., et al. (2017). High temperature three dimensional printing compositions. US Patents.

    Google Scholar 

  16. Wilson, J. E., & Burton, M. (1974). Radiation chemistry of monomers, polymers, and plastics. Physics Today, 27, 50.

    Article  Google Scholar 

  17. Sager, B., & Rosen, D. W. (2008). Use of parameter estimation for stereolithography surface finish improvement. Rapid Prototyping Journal, 14(4), 213–220.

    Article  Google Scholar 

  18. Sperling, L. H. (2012). Interpenetrating polymer networks and related materials. Springer Science & Business Media, New York, USA.

    Google Scholar 

  19. Crivello, J. V., Lee, J. L., & Conlon, D. A. (1983). Photoinitiated cationic polymerization with multifunctional vinyl ether monomers. Journal of Radiation Curing, 10(1), 6–13.

    Google Scholar 

  20. Chaudhary, S., et al. (2014). Poly (ethyleneterephthalate) glycolysates as effective toughening agents for epoxy resin. Journal of Applied Polymer Science, 131(4).

    Google Scholar 

  21. Napadensky, E., Kritchman, E. M., & Cohen, A. (2007). Compositions and methods for use in three dimensional model printing. US Patents.

    Google Scholar 

  22. Vaezi, M., et al. (2013). Multiple material additive manufacturing–Part 1: A review: This review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virtual and Physical Prototyping, 8(1), 19–50.

    Article  Google Scholar 

  23. Khodabakhshi, K., et al. (2014). Anionic polymerisation of caprolactam at the small-scale via DSC investigations. Journal of Thermal Analysis and Calorimetry, 115(1), 383–391.

    Article  Google Scholar 

  24. Chaudhary, K. C., & Redekopp, L. G. (1980). The nonlinear capillary instability of a liquid jet. Part 1. Theory. Journal of Fluid Mechanics, 96(2), 257–274.

    Article  MATH  Google Scholar 

  25. Zocca, A., et al. (2015). Additive manufacturing of ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98(7), 1983–2001.

    Article  Google Scholar 

  26. Lithoz GmbH. (2020). Available Materials for the LCM process. https://www.lithoz.com/en/our-products/materials

  27. Schwentenwein, M., & Homa, J. (2015). Additive manufacturing of dense alumina ceramics. International Journal of Applied Ceramic Technology, 12(1), 1–7.

    Article  Google Scholar 

  28. Amado, A., et al. (2011). Advances in SLS powder characterization. In 22nd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2011.

    Google Scholar 

  29. Hopkinson, N., & Erasenthiran, P. (2004). High speed sintering - Early research into a new rapid manufacturing process. Solid Freeform Fabrication Symposium, 312–320.

    Google Scholar 

  30. Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928.

    Article  Google Scholar 

  31. Bourell, D., et al. (2011). Modeling effects of oxygen inhibition in mask-based stereolithography. Rapid Prototyping Journal, 17(3).

    Google Scholar 

  32. DebRoy, T., et al. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112–224.

    Article  Google Scholar 

  33. Zito, D., et al. (2014). Optimization of SLM technology main parameters in the production of gold and platinum jewelry. In The Santa Fe Symposium on Jewelry Manufacturing Technology 2014.

    Google Scholar 

  34. Pettersson, T. (2015). Characterization of metal powders produced by two gas atomizing methods for thermal spraying applications.

    Google Scholar 

  35. ATO LAB. (2020). http://metalatomizer.com/

  36. Van Acker, K., et al. (2005). Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear, 258(1), 194–202.

    Article  Google Scholar 

  37. Zhang, J., & Jung, Y.-G. (2018). Additive manufacturing: Materials, processes, quantifications and applications. Cambridge, MA: Butterworth-Heinemann.

    Google Scholar 

  38. Mahbooba, Z., et al. (2018). Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness. Applied Materials Today, 11, 264–269.

    Article  Google Scholar 

  39. Niu, F. Y., et al. (2017). Process optimization for suppressing cracks in laser engineered net shaping of Al2O3 ceramics. JOM, 69(3), 557–562.

    Article  Google Scholar 

  40. Wilkes, J., et al. (2013). Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 19(1), 51–57.

    Article  Google Scholar 

  41. Du, W., et al. (2017). Binder jetting additive manufacturing of ceramics: A literature review. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection.

    Google Scholar 

  42. Gildenhaar, R., et al. (2012). Calcium alkaline phosphate scaffolds for bone regeneration 3D-fabricated by additive manufacturing. Key Engineering Materials, 493-494, 849–854. Trans Tech Publ.

    Article  Google Scholar 

  43. Suwanprateeb, J., Sanngam, R., & Panyathanmaporn, T. (2010). Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Materials Science and Engineering: C, 30(4), 610–617.

    Article  Google Scholar 

  44. Deckers, J., Vleugels, J., & Kruth, J. P. (2014). Additive manufacturing of ceramics: A review. Journal of Ceramic Science and Technology, 5(4), 245–260.

    Google Scholar 

  45. Liu, D., et al. (2013). Mechanical properties’ improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering. Biofabrication, 5(2), 025005.

    Article  MathSciNet  Google Scholar 

  46. Chivel, Y. (2014). Ablation phenomena and instabilities under laser melting of powder layers. In 8th International Conference on Photonic Technologies LANE.

    Google Scholar 

  47. Evans, R. S., et al. (2005). Rapid manufacturing of silicon carbide composites. Rapid Prototyping Journal, 11(1), 37–40.

    Article  Google Scholar 

  48. Bai, P.-K., Cheng, J., & Liu, B. (2005). Selective laser sintering of polymer-coated Al_2O_3/ZrO_2/TiC ceramic powder. China Nonferrous Metals Society Journal (English version), 15(2), 02.

    Google Scholar 

  49. Hofmann, D. C., et al. (2014). Compositionally graded metals: A new frontier of additive manufacturing. Journal of Materials Research, 29(17), 1899–1910.

    Article  Google Scholar 

  50. Kieback, B., Neubrand, A., & Riedel, H. (2003). Processing techniques for functionally graded materials. Materials Science and Engineering A, 362(1–2), 81–106.

    Article  Google Scholar 

  51. Carroll, B. E., et al. (2016). Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Materialia, 108, 46–54.

    Article  Google Scholar 

  52. Nag, S., et al. (2009). Characterization of novel borides in Ti–Nb–Zr–Ta+2B metal-matrix composites. Materials Characterization, 60(2), 106–113.

    Article  Google Scholar 

  53. Gasper, A. N. D., Catchpole-Smith, S., & Clare, A. T. (2017). In-situ synthesis of titanium aluminides by direct metal deposition. Journal of Materials Processing Technology, 239, 230–239.

    Article  Google Scholar 

  54. Fu, Z., et al. (2013). Three-dimensional printing of SiSiC lattice truss structures. Materials Science and Engineering: A, 560, 851–856.

    Article  Google Scholar 

  55. SciakyINC. (2020). https://www.sciaky.com/additive-manufacturing/wire-vs-powder

  56. Ding, D., et al. (2015). Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81(1), 465–481.

    Article  Google Scholar 

  57. Elektriska Svetsnings-Aktiebolaget (ESAB), Editor. Technical handbook strip cladding, Sweden, 2020.

    Google Scholar 

  58. The new dimension in stip cladding, L. Electric, Publisher Lincoln Electric, Ohio, USA, 2020.

    Google Scholar 

  59. MELD Manufacturing. (2020). http://meldmanufacturing.com/

  60. Zhang, Y., et al. (2001). Al2O3 ceramics preparation by LOM (Laminated Object Manufacturing). The International Journal of Advanced Manufacturing Technology, 17(7), 531–534.

    Article  Google Scholar 

  61. Das, A., et al. (2003). Binder removal studies in ceramic thick shapes made by laminated object manufacturing. Journal of the European Ceramic Society, 23(7), 1013–1017.

    Article  Google Scholar 

  62. Schindler, K., & Roosen, A. (2009). Manufacture of 3D structures by cold low pressure lamination of ceramic green tapes. Journal of the European Ceramic Society, 29(5), 899–904.

    Article  Google Scholar 

  63. Cai, K., et al. (2012). Geometrically complex silicon carbide structures fabricated by robocasting. Journal of the American Ceramic Society, 95(8), 2660–2666.

    Article  Google Scholar 

  64. McMillen, D., et al. (2016). Designed extrudate for additive manufacturing of zirconium diboride by ceramic on-demand extrusion. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium University of Texas, Austin.

    Google Scholar 

  65. Travitzky, N., et al. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729–754.

    Article  Google Scholar 

  66. Norfolk, M. (2019). Ultrasonic additive manufacturing overview.

    Google Scholar 

  67. Fabrisonic. (2020). https://fabrisonic.com/gradient-material-solutions/

  68. Janaki Ram, G., et al. (2007). Use of ultrasonic consolidation for fabrication of multi-material structures. Rapid Prototyping Journal, 13(4), 226–235.

    Article  Google Scholar 

  69. Sculpteo. (2020). LOM (Laminated Object Manufacturing): 3D Printing with Layers of Paper. https://www.sculpteo.com/en/glossary/lom-definition/

  70. Castles, F., et al. (2016). Microwave dielectric characterisation of 3D-printed BaTiO 3/ABS polymer composites. Scientific Reports, 6, 22714.

    Article  Google Scholar 

  71. Wang, X., et al. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458.

    Article  Google Scholar 

  72. ColorFabb. (2020). https://colorfabb.com/steelfill

  73. Wang, J., et al. (2016). A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Materials & Design, 105, 152–159.

    Article  Google Scholar 

  74. Tuominen, J. (2017). Directed energy deposition - Review of materials, properties and applications.

    Google Scholar 

  75. Kruth, J. P. et al. (2015). Additive manufacturing of metals via Selective Laser Melting: Process aspects and material developments.

    Google Scholar 

  76. Khorasani, A. M., Gibson, I., & Ghaderi, A. R. (2018). Rheological characterization of process parameters influence on surface quality of Ti-6Al-4V parts manufactured by selective laser melting. The International Journal of Advanced Manufacturing Technology, 97(9–12), 3761–3775.

    Article  Google Scholar 

  77. Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1–16.

    Article  Google Scholar 

  78. Khorasani, A., et al. (2017). Production of Ti-6Al-4V acetabular shell using selective laser melting: Possible limitations in fabrication. Rapid Prototyping Journal, 23(1), 110–121.

    Article  Google Scholar 

  79. Olakanmi, E. O., Cochrane, R. F., & Dalgarno, K. W. (2015). A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science, 74, 401–477.

    Article  Google Scholar 

  80. Islam, M. S., & Prabhakar, P. (2017). Interlaminar strengthening of multidirectional laminates using polymer additive manufacturing. Materials & Design, 133, 332–339.

    Article  Google Scholar 

  81. Khorasani, A. M., et al. (2018). A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3765–3784.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibson, I., Rosen, D., Stucker, B., Khorasani, M. (2021). Materials for Additive Manufacturing. In: Additive Manufacturing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-56127-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56127-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56126-0

  • Online ISBN: 978-3-030-56127-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics