Skip to main content

Molecular Diagnostics: Innovative Technologies for Clinical and Translational Research

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Part of the book series: UNIPA Springer Series ((USS))

  • 3331 Accesses

Abstract

In recent years, cancer patients’ treatment has profoundly changed due to a better comprehension of the biological processes underlying tumor development and progression. Several tumors are defined as “oncogene addicted” meaning that they are strictly dependent on oncogene activation for their own survival. This discovery has indeed led the way to the development of target therapies that are able to specifically kill cancer cells sparing normal cells from toxicity. For these reasons, nowadays, treatment decision is strictly dependent on the molecular characterization of the tumor that can be achieved through different technologies. Within this chapter, we will discuss the main technologies that are used in clinical practice for molecular characterization of tumor samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holley RW. Structure of an alanine transfer ribonucleic acid. JAMA. 1965;194:868–71.

    Article  CAS  PubMed  Google Scholar 

  2. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swerdlow H, Gesteland R. Capillary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res. 1990;18:1415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11:1026–30.

    CAS  PubMed  Google Scholar 

  6. Nigro JM, Takahashi MA, Ginzinger DG, et al. Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative polymerase chain reaction assay. Am J Pathol. 2001;158:1253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson VJ, Yucesoy B, Luster MI. Genotyping of single nucleotide polymorphisms in cytokine genes using real-time PCR allelic discrimination technology. Cytokine. 2004;27:135–41.

    Article  CAS  PubMed  Google Scholar 

  8. Schmittgen TD, Teske S, Vessella RL, et al. Expression of prostate specific membrane antigen and three alternatively spliced variants of PSMA in prostate cancer patients. Int J Cancer. 2003;107:323–9.

    Article  CAS  PubMed  Google Scholar 

  9. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′----3′' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee LG, Connell CR, Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res. 1993;21:3761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopez-Crapez E, Bazin H, Andre E, et al. A homogeneous europium cryptate-based assay for the diagnosis of mutations by time-resolved fluorescence resonance energy transfer. Nucleic Acids Res. 2001;29:E70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques. 1998;24:954–8, 960, 962.

    CAS  PubMed  Google Scholar 

  13. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997;245:154–60.

    Article  CAS  PubMed  Google Scholar 

  14. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94.

    Article  CAS  PubMed  Google Scholar 

  15. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res. 1996;6:995–1001.

    Article  CAS  PubMed  Google Scholar 

  16. Moter A, Göbel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods. 2000;41:85–112.

    Article  CAS  PubMed  Google Scholar 

  17. Chae YK, Arya A, Chiec L, et al. Challenges and future of biomarker tests in the era of precision oncology: can we rely on immunohistochemistry (IHC) or fluorescence. Oncotarget. 2017;8:100863–98.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer - uncovering new and evolving roles through genomic analysis. Nat Rev Genet. 2018;19:160–74.

    Article  CAS  PubMed  Google Scholar 

  19. Russo A, Incorvaia L, Malapelle U, et al. The tumor-agnostic treatment for patients with solid tumors: a position paper on behalf of the AIOM-SIAPEC/IAP-SIBIOC-SIF italian scientific societies [published online ahead of print, 2021 Aug 6]. Crit Rev Oncol Hematol. 2021;103436. https://doi.org/10.1016/j.critrevonc.2021.103436.

  20. Bronte G, Rolfo C, Giovannetti E, et al. Are erlotinib and gefitinib interchangeable, opposite or complementary for non-small cell lung cancer treatment? Biological, pharmacological and clinical aspects. Crit Rev Oncol Hematol. 2014;89:300–13.

    Article  PubMed  Google Scholar 

  21. Pisapia P, Lozano MD, Vigliar E, et al. ALK and ROS1 testing on lung cancer cytologic samples: perspectives. Cancer Cytopathol. 2017;125:817–30.

    Article  CAS  PubMed  Google Scholar 

  22. Savola S, Nardi F, Scotlandi K, et al. Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma. Cytogenet Genome Res. 2007;119:21–6.

    Article  CAS  PubMed  Google Scholar 

  23. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705.

    Article  CAS  PubMed  Google Scholar 

  24. Li L, Zhang Z, Bie Z, et al. Epidermal growth factor receptor mutation analysis in cytological specimens and responsiveness to gefitinib in advanced non-small cell lung cancer patients. Chin J Cancer Res. 2015;27:294–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nyrén P, Lundin A. Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem. 1985;151:504–9.

    Article  PubMed  Google Scholar 

  26. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–5.

    Article  CAS  PubMed  Google Scholar 

  27. Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat Biotechnol. 1998;16:652–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–52.

    Article  CAS  PubMed  Google Scholar 

  30. Loman NJ, Misra RV, Dallman TJ, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fedurco M, Romieu A, Williams S, et al. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 2006;34:e22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turcatti G, Romieu A, Fedurco M, Tairi AP. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 2008;36:e25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malapelle U, Mayo-de-Las-Casas C, Molina-Vila MA, et al. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol. 2017;125:615–26.

    Article  CAS  PubMed  Google Scholar 

  35. Malapelle U, Mayo de-Las Casas C, Rocco D, et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer. 2017;116:802–10.

    Google Scholar 

  36. Bordi P, Del Re M, Danesi R, Tiseo M. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Transl Lung Cancer Res. 2015;4:584–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Russo A, Incorvaia L, Del Re M, et al. The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM-SIAPEC-IAP-SIBioC-SIC-SIF Italian Scientific Societies [published online ahead of print, 2021 Jun 3]. ESMO Open. 2021;6(3):100164. https://doi.org/10.1016/j.esmoop.2021.100164.

  38. Dietel M, Bubendorf L, Dingemans AM, et al. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European expert group. Thorax. 2016;71:177–84.

    Article  PubMed  Google Scholar 

  39. Bubendorf L, Büttner R, Al-Dayel F, et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 2016;469:489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ullal AV, Peterson V, Agasti SS, et al. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates. Sci Transl Med. 2014;6:219ra219.

    Article  Google Scholar 

  41. Sgariglia R, Pisapia P, Nacchio M, et al. Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study. J Clin Pathol. 2017;70:803–6.

    Article  CAS  PubMed  Google Scholar 

  42. Evangelista AF, Zanon MF, Carloni AC, et al. Detection of ALK fusion transcripts in FFPE lung cancer samples by NanoString technology. BMC Pulm Med. 2017;17:86.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96:9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhat S, Herrmann J, Armishaw P, et al. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem. 2009;394:457–67.

    Article  CAS  PubMed  Google Scholar 

  45. Bhat S, Curach N, Mostyn T, et al. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal Chem. 2010;82:7185–92.

    Article  CAS  PubMed  Google Scholar 

  46. Kalinina O, Lebedeva I, Brown J, Silver J. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res. 1997;25:1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhong Q, Bhattacharya S, Kotsopoulos S, et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11:2167–74.

    Article  CAS  PubMed  Google Scholar 

  48. Morley AA. Digital PCR: a brief history. Biomol Detect Quantif. 2014;1:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dong L, Meng Y, Sui Z, et al. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci Rep. 2015;5:13174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castiglia, M., Pepe, F., Perez, A., Malapelle, U. (2021). Molecular Diagnostics: Innovative Technologies for Clinical and Translational Research. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics