Skip to main content

Liquid Biopsy

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Abstract

In recent years, cancer patients’ management has been completely revolutionized thanks to a better comprehension of the biological processes underlying tumor development and progression. Nowadays treatment decision is strictly dependent on the molecular characterization of the tumor; thus, the path of cancer patients’ survival is tissue dependent, but this may have several limitations. One of the main medical needs is to develop noninvasive or minimally invasive and dynamic tools allowing a strict patients’ follow-up at different time points, and liquid biopsy encompasses this characteristic.

The term liquid biopsy includes several tumor components that can be detected in almost all biological fluids (plasma, serum, saliva, urine, and effusions). The principal aim of liquid biopsy is to detect and analyze biological material originated within and from the tumor: circulating nucleic acids [circulating tumor DNA (ctDNA), circulating microRNA and circulating RNA)], circulating tumor cells (CTC) and extracellular vesicles (exosomes and microvesicles). The information acquired through liquid biopsy can be either diagnostic, prognostic or predictive and used for real-time monitoring of disease progression. As endorsed by most international scientific societies, the detection of an actionable alteration in ctDNA, if using a validated assay, would eventually represent sufficient evidence to initiate targeted treatment, albeit not without reimbursement variations among all the different countries. To date, in most countries, the clinical application of liquid biopsy is often limited to the evaluation of epidermal growth factor receptor (EGFR) activating and resistance mutations in non-small cell lung cancer (NSCLC) for which target therapies are available. More recently, following the introduction of immune-oncology (IO)-based treatments, the bases for a new type of liquid biopsy were built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3:448–57.

    Article  CAS  PubMed  Google Scholar 

  2. Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science. 2002;297:63–4.

    Article  CAS  PubMed  Google Scholar 

  3. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80. discussion 3080

    Article  CAS  PubMed  Google Scholar 

  4. Russo A, Incorvaia L, Del Re M, et al. The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM-SIAPEC-IAP-SIBioC-SIC-SIF Italian Scientific Societies [published online ahead of print, 2021 Jun 3]. ESMO Open. 2021;6(3):100164. https://doi.org/10.1016/j.esmoop.2021.100164.

  5. Russo A, Incorvaia L, Malapelle U, et al. The tumor-agnostic treatment for patients with solid tumors: a position paper on behalf of the AIOM-SIAPEC/IAP-SIBIOC-SIF italian scientific societies [published online ahead of print, 2021 Aug 6]. Crit Rev Oncol Hematol. 2021;103436. https://doi.org/10.1016/j.critrevonc.2021.103436.

  6. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28.

    Article  CAS  PubMed  Google Scholar 

  7. Incorvaia L, Fanale D, Badalamenti G, et al. Programmed Death Ligand 1 (PD-L1) as a predictive biomarker for pembrolizumab therapy in patients with advanced Non-Small-Cell Lung Cancer (NSCLC). Adv Ther. 2019;36(10):2600–17. https://doi.org/10.1007/s12325-019-01057-7.

  8. Leto G, Incorvaia L, Flandina C, et al. Clinical impact of cystatin C/cathepsin L and follistatin/activin A systems in breast cancer progression: a preliminary report. Cancer Invest. 2016;34(9):415–23. https://doi.org/10.1080/07357907.2016.1222416.

  9. Rolfo C, Castiglia M, Hong D, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta. 1846;2014:539–46.

    Google Scholar 

  10. Bian B, Fanale D, Dusetti N, et al. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology. 2019;8(4):e1561120. Published 2019 Feb 3. https://doi.org/10.1080/2162402X.2018.1561120.

  11. Incorvaia L, Fanale D, Badalamenti G, et al. A “Lymphocyte MicroRNA Signature” as predictive biomarker of immunotherapy response and plasma PD-1/PD-L1 expression levels in patients with metastatic renal cell carcinoma: pointing towards epigenetic reprogramming. Cancers (Basel). 2020;12(11):3396. Published 2020 Nov 16. https://doi.org/10.3390/cancers12113396.

  12. Cheng J, Holland-Letz T, Wallwiener M, et al. Circulating free DNA integrity and concentration as independent prognostic markers in metastatic breast cancer. Breast Cancer Res Treat. 2018;169(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  13. Hashad D, Sorour A, Ghazal A, Talaat I. Free circulating tumor DNA as a diagnostic marker for breast cancer. J Clin Lab Anal. 2012;26:467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS  PubMed  Google Scholar 

  15. Allenson K, Castillo J, San Lucas FA, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol. 2017;28:741–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. San Lucas FA, Allenson K, Bernard V, et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol. 2016;27:635–41.

    Article  CAS  PubMed  Google Scholar 

  17. Goto T, Fujiya M, Konishi H, et al. An elevated expression of serum exosomal microRNA-191, − 21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer. 2018;18:116.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fu F, Jiang W, Zhou L, Chen Z. Circulating Exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol. 2018;11:221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105:16266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.

    CAS  PubMed  Google Scholar 

  22. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra224.

    Article  Google Scholar 

  23. Incorvaia L, Badalamenti G, Rini G, et al. MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res. 2007;27(3B):1519–25.

    Google Scholar 

  24. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta. 1775;2007:181–232.

    Google Scholar 

  25. Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 1983;51:2116–20.

    Article  CAS  PubMed  Google Scholar 

  26. Chan KC, Yeung SW, Lui WB, et al. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem. 2005;51:781–4.

    Article  CAS  PubMed  Google Scholar 

  27. Swinkels DW, Wiegerinck E, Steegers EA, de Kok JB. Effects of blood-processing protocols on cell-free DNA quantification in plasma. Clin Chem. 2003;49:525–6.

    Article  CAS  PubMed  Google Scholar 

  28. Cabibi D, Caruso S, Bazan V, et al. Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus. Oncotarget. 2016;7(30):47821–30. https://doi.org/10.18632/oncotarget.10291.

  29. Karachaliou N, Mayo-de las Casas C, Queralt C et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol 2015; 1: 149–157.

    Article  PubMed  Google Scholar 

  30. Malapelle U, Pisapia P, Rocco D, et al. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res. 2016;5:505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malapelle U, Sirera R, Jantus-Lewintre E, et al. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn. 2017;17:209–15.

    Article  CAS  PubMed  Google Scholar 

  32. Passiglia F, Galvano A, Castiglia M, et al. Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients. Ther Adv Med Oncol. 2019;11:1758835919839928. Published 2019 Apr 16. https://doi.org/10.1177/1758835919839928.

  33. Del Re M, Vasile E, Falcone A, et al. Molecular analysis of cell-free circulating DNA for the diagnosis of somatic mutations associated with resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Expert Rev Mol Diagn. 2014;14:453–68.

    Article  PubMed  Google Scholar 

  34. Khozin S, Weinstock C, Blumenthal GM, et al. Osimertinib for the treatment of metastatic EGFR T790M mutation-positive non-small cell lung cancer. Clin Cancer Res. 2017;23:2131–5.

    Article  CAS  PubMed  Google Scholar 

  35. Yang JC, Ahn MJ, Kim DW, et al. Osimertinib in Pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component. J Clin Oncol. 2017;35:1288–96.

    Article  CAS  PubMed  Google Scholar 

  36. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376:629–40.

    Article  CAS  PubMed  Google Scholar 

  37. Gristina V, Malapelle U, Galvano A, et al. The significance of epidermal growth factor receptor uncommon mutations in non-small cell lung cancer: a systematic review and critical appraisal. Cancer Treat Rev. 2020;85:101994.

    Article  CAS  PubMed  Google Scholar 

  38. Rolfo C, Mack PC, Scagliotti GV, et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol. 2018;13:1248–68.

    Article  PubMed  Google Scholar 

  39. Passiglia F, Rizzo S, Rolfo C, et al. Metastatic site location influences the diagnostic accuracy of ctDNA EGFR- mutation testing in NSCLC patients: a pooled analysis. Curr Cancer Drug Targets. 2018;18:697–705.

    Article  CAS  PubMed  Google Scholar 

  40. Nacchio M, Sgariglia R, Gristina V, et al. KRAS mutations testing in non-small cell lung cancer: the role of liquid biopsy in the basal setting. J Thorac Dis. 2020.

    Google Scholar 

  41. Oxnard GR, Paweletz CP, Kuang Y, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20:1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Remon J, Menis J, Hasan B, et al. The APPLE trial: feasibility and activity of AZD9291 (Osimertinib) treatment on positive PLasma T790M in EGFR-mutant NSCLC patients. EORTC 1613. Clin Lung Cancer. 2017;18:583–8.

    Article  CAS  PubMed  Google Scholar 

  43. Oxnard GR, Hu Y, Mileham KF, et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung Cancer and acquired resistance to osimertinib. JAMA Oncol. 2018;4:1527–34.

    Article  PubMed  Google Scholar 

  44. Niederst MJ, Hu H, Mulvey HE, et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res. 2015;21:3924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Yang JJ, Huang J, et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J Thorac Oncol. 2017;12:1723–7.

    Article  PubMed  Google Scholar 

  46. Goldberg ME, Montesion M, Young L, et al. Multiple configurations of EGFR exon 20 resistance mutations after first- and third-generation EGFR TKI treatment affect treatment options in NSCLC. PLoS One. 2018;13:e0208097.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378:113–25.

    Article  CAS  PubMed  Google Scholar 

  48. Ramalingam SS, Yang JC, Lee CK, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018;36:841–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wang W, Song Z, Zhang Y. A comparison of ddPCR and ARMS for detecting EGFR T790M status in ctDNA from advanced NSCLC patients with acquired EGFR-TKI resistance. Cancer Med. 2017;6:154–62.

    Article  CAS  PubMed  Google Scholar 

  50. Thompson JC, Yee SS, Troxel AB, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22:5772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hruštincová A, Votavová H, Dostálová MM. Circulating MicroRNAs: methodological aspects in detection of these biomarkers. Folia Biol (Praha). 2015;61:203–18.

    PubMed  Google Scholar 

  52. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiang M, Zeng Y, Yang R, et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. 2014;454:210–4.

    Article  CAS  PubMed  Google Scholar 

  54. Chen X, Liang H, Guan D, et al. A combination of Let-7d, Let-7g and Let-7i serves as a stable reference for normalization of serum microRNAs. PLoS One. 2013;8:e79652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Steudemann C, Bauersachs S, Weber K, Wess G. Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls. BMC Vet Res. 2013;9:12.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Blenkiron C, Askelund KJ, Shanbhag ST, et al. MicroRNAs in mesenteric lymph and plasma during acute pancreatitis. Ann Surg. 2014;260:341–7.

    Article  PubMed  Google Scholar 

  57. Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10:490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mamdani H, Ahmed S, Armstrong S, et al. Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl Lung Cancer Res. 2017;6:648–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao K, Cheng J, Chen B, et al. Circulating microRNA-34 family low expression correlates with poor prognosis in patients with non-small cell lung cancer. J Thorac Dis. 2017;9:3735–46.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Moretti F, D'Antona P, Finardi E, et al. Systematic review and critique of circulating miRNAs as biomarkers of stage I-II non-small cell lung cancer. Oncotarget. 2017;8:94980–96.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ma Y, Pan X, Xu P, et al. Plasma microRNA alterations between EGFR-activating mutational NSCLC patients with and without primary resistance to TKI. Oncotarget. 2017;8:88529–36.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Watanabe S. The metastasizability of tumor cells. Cancer. 1954;7:215–23.

    Article  CAS  PubMed  Google Scholar 

  64. Lv C, Zhao B, Wang L, et al. Detection of circulating tumor cells in pulmonary venous blood for resectable non-small cell lung cancer. Oncol Lett. 2018;15:1103–12.

    PubMed  Google Scholar 

  65. Li Y, Wu S, Bai F. Molecular characterization of circulating tumor cells-from bench to bedside. Semin Cell Dev Biol. 2018;75:88–97.

    Article  PubMed  Google Scholar 

  66. Ribelles N, Santonja A, Pajares B, et al. The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat Rev. 2014;40:293–9.

    Article  PubMed  Google Scholar 

  67. Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19:1450–64.

    Article  CAS  PubMed  Google Scholar 

  68. Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mohan S, Chemi F, Brady G. Challenges and unanswered questions for the next decade of circulating tumour cell research in lung cancer. Transl Lung Cancer Res. 2017;6:454–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15:406–14.

    Article  PubMed  Google Scholar 

  71. Leto G, Incorvaia L, Badalamenti G, et al. Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin Exp Metastasis. 2006;23(2):117–22. https://doi.org/10.1007/s10585-006-9010-5.

  72. Yu M, Stott S, Toner M, et al. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192:373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.

    Article  PubMed  Google Scholar 

  74. Saucedo-Zeni N, Mewes S, Niestroj R, et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol. 2012;41:1241–50.

    PubMed  PubMed Central  Google Scholar 

  75. Theil G, Fischer K, Weber E, et al. The use of a new cellcollector to isolate circulating tumor cells from the blood of patients with different stages of prostate cancer and clinical outcomes – a proof-of-concept study. PLoS One. 2016;11:e0158354.

    Google Scholar 

  76. Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol. 2000;156:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Farace F, Massard C, Vimond N, et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer. 2011;105:847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laget S, Broncy L, Hormigos K, et al. Technical insights into highly sensitive isolation and molecular characterization of fixed and live circulating tumor cells for early detection of tumor invasion. PLoS One. 2017;12:e0169427.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gascoyne PR, Shim S, Noshari J, et al. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis. 2013;34:1042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okumura Y, Tanaka F, Yoneda K, et al. Circulating tumor cells in pulmonary venous blood of primary lung cancer patients. Ann Thorac Surg. 2009;87:1669–75.

    Article  PubMed  Google Scholar 

  81. Yamashita JI, Kurusu Y, Fujino N, et al. Detection of circulating tumor cells in patients with non-small cell lung cancer undergoing lobectomy by video-assisted thoracic surgery: a potential hazard for intraoperative hematogenous tumor cell dissemination. J Thorac Cardiovasc Surg. 2000;119:899–905.

    Article  CAS  PubMed  Google Scholar 

  82. de Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14:6302–9.

    Article  PubMed  Google Scholar 

  83. Ge MJ, Shi D, Wu QC, et al. Observation of circulating tumour cells in patients with non-small cell lung cancer by real-time fluorescent quantitative reverse transcriptase-polymerase chain reaction in peroperative period. J Cancer Res Clin Oncol. 2006;132:248–56.

    Article  CAS  PubMed  Google Scholar 

  84. Sawabata N, Okumura M, Utsumi T, et al. Circulating tumor cells in peripheral blood caused by surgical manipulation of non-small-cell lung cancer: pilot study using an immunocytology method. Gen Thorac Cardiovasc Surg. 2007;55:189–92.

    Article  PubMed  Google Scholar 

  85. de Miguel-Pérez D, Bayarri-Lara CI, Ortega FG, et al. Post-surgery circulating tumor cells and AXL overexpression as new poor prognostic biomarkers in resected lung adenocarcinoma. Cancers (Basel). 2019;11(11):1750.

    Article  PubMed  Google Scholar 

  86. Krebs MG, Sloane R, Priest L, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011;29:1556–63.

    Article  PubMed  Google Scholar 

  87. Isobe K, Hata Y, Kobayashi K, et al. Clinical significance of circulating tumor cells and free DNA in non-small cell lung cancer. Anticancer Res. 2012;32:3339–44.

    PubMed  Google Scholar 

  88. He W, Li W, Jiang B, et al. Correlation between epidermal growth factor receptor tyrosine kinase inhibitor efficacy and circulating tumor cell levels in patients with advanced non-small cell lung cancer. Onco Targets Ther. 2016;9:7515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taylor DD, Doellgast GJ. Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal Biochem. 1979;98:53–9.

    Article  CAS  PubMed  Google Scholar 

  90. Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20:847–56.

    Article  CAS  PubMed  Google Scholar 

  91. Trams EG, Lauter CJ, Salem N, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981;645:63–70.

    Article  CAS  PubMed  Google Scholar 

  92. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91:431–7.

    Article  CAS  PubMed  Google Scholar 

  93. Bellavia D, Raimondo S, Calabrese G, et al. Interleukin 3- receptor targeted exosomes inhibit. Theranostics. 2017;7:1333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rabinowits G, Gerçel-Taylor C, Day JM, et al. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42–6.

    Article  CAS  PubMed  Google Scholar 

  95. Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived Exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 2017;23:5311–9.

    Article  CAS  PubMed  Google Scholar 

  96. Dejima H, Iinuma H, Kanaoka R, et al. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett. 2017;13:1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hur JY, Kim HJ, Lee JS, et al. Extracellular vesicle-derived DNA for performing EGFR genotyping of NSCLC patients. Mol Cancer. 2018;17:15.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Reclusa P, Laes J-F, Malapelle U, et al. EML4-ALK translocation identification in RNA exosomal cargo ( ExoALK ) in NSCLC patients: a novel role for liquid biopsy. Transl Cancer Res. 2018;8:S76–8.

    Article  Google Scholar 

  100. Tu M, Wei F, Yang J, Wong D. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). J Vis Exp. 2015; 52439.

    Google Scholar 

  101. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30:3–22.

    Article  Google Scholar 

  102. Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2:19861.

    Article  Google Scholar 

  103. Kenigsberg S, Wyse BA, Librach CL, da Silveira JC. Protocol for exosome isolation from small volume of ovarian follicular fluid: evaluation of ultracentrifugation and commercial kits. Methods Mol Biol. 1660;2017:321–41.

    Google Scholar 

  104. Helwa I, Cai J, Drewry MD, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One. 2017;12:e0170628.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fontana S, Simona F, Saieva L, et al. Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics. 2013;13:1581–94.

    Article  CAS  PubMed  Google Scholar 

  106. Park JO, Choi DY, Choi DS, et al. Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. Proteomics. 2013;13:2125–34.

    Article  CAS  PubMed  Google Scholar 

  107. Incorvaia L, Fanale D, Badalamenti G, et al. Programmed death ligand 1 (PD-L1) as a predictive biomarker for pembrolizumab therapy in patients with advanced non-small-cell lung cancer (NSCLC). Adv Ther. 2019;36(10):2600–17. https://doi.org/10.1007/s12325-019-01057-7.

  108. Fanale D, Incorvaia L, Badalamenti G, et al. Prognostic role of plasma PD-1, PD-L1, pan-BTN3As and BTN3A1 in patients affected by metastatic gastrointestinal stromal tumors: can immune checkpoints act as a sentinel for short-term survival?. Cancers (Basel). 2021;13(9):2118. Published 2021 Apr 27. https://doi.org/10.3390/cancers13092118.

  109. Incorvaia L, Badalamenti G, Rinaldi G, et al. Can the plasma PD-1 levels predict the presence and efficiency of tumor-infiltrating lymphocytes in patients with metastatic melanoma?. Ther Adv Med Oncol. 2019;11:1758835919848872. Published 2019 May 13. https://doi.org/10.1177/1758835919848872.

  110. Okuma Y, Wakui H, Utsumi H, et al. Soluble Programmed Cell Death Ligand 1 as a Novel Biomarker for Nivolumab Therapy for Non-Small-cell Lung cancer. Clin Lung Cancer. 2018;19:410–7.e411.

    Article  CAS  PubMed  Google Scholar 

  111. Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Incorvaia L, Fanale D, Badalamenti G, et al. Baseline plasma levels of soluble PD-1, PD-L1, and BTN3A1 predict response to nivolumab treatment in patients with metastatic renal cell carcinoma: a step toward a biomarker for therapeutic decisions. Oncoimmunology. 2020;9(1):1832348. Published 2020 Oct 27. https://doi.org/10.1080/2162402X.2020.1832348.

  113. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lennon AM, Buchanan AH, Kinde I, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020.

    Google Scholar 

  115. Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K. PET/CT in oncology: current status and perspectives. Curr Radiol Rep. 2013;1:177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu MC, Oxnard GR, Klein EA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020.

    Google Scholar 

  117. Liu L, Toung JM, Jassowicz AF, et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann Oncol. 2018;29:1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu MC, Klein, et al. Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: The circulating cell-free genome atlas (CCGA) study. Ann Oncol. 2018;29(suppl_8):viii14.

    Article  Google Scholar 

  119. Oxnard GR, Klein EA, Seiden M, et al. Simultaneous multi-cancer detection and tissue of origin (TOO) localization using targeted bisulfite sequencing of plasma cell-free DNA (cfDNA). JCO Global Oncol. 2019;5:44.

    Article  Google Scholar 

  120. Ilie M, Hofman V, Long-Mira E, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9:e111597.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Veronesi G, Bellomi M, Mulshine JL, et al. Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules. Lung Cancer. 2008;61:340–9.

    Article  PubMed  Google Scholar 

  122. Bianchi F, Nicassio F, Marzi M, et al. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med. 2011;3:495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sozzi G, Boeri M, Rossi M, et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol. 2014;32:768–73.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang L, Zheng J, Ahmed R, et al. A high-performing plasma metabolite panel for early-stage lung cancer detection. Cancers (Basel). 2020;12(3):622.

    Article  CAS  PubMed  Google Scholar 

  125. Singhal S, Rolfo C, Maksymiuk AW, et al. Liquid biopsy in lung cancer screening: the contribution of metabolomics. results of a pilot study. Cancers (Basel). 2019;11(8):1069.

    Article  CAS  PubMed  Google Scholar 

  126. Daniel S, Ambar A, Xing X, et al. Orthogonal comparison of four plasma NGS tests with tumor suggests technical factors are a major source of assay discordance. JCO Precis Oncol. 2019;3:1–9.

    Google Scholar 

  127. Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra168.

    Article  Google Scholar 

  128. Oxnard GR, Thress KS, Alden RS, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:3375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hu Y, Ulrich BC, Supplee J, et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res. 2018;24:4437–43.

    Article  CAS  PubMed  Google Scholar 

  130. Anglesio MS, Papadopoulos N, Ayhan A, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med. 2017;376:1835–48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castiglia, M. et al. (2021). Liquid Biopsy. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics