Skip to main content

Targeted Therapy

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Abstract

Novel technologies and interdisciplinary approaches have substantially increased our knowledge of cancer biology and clarified that some tumors are addicted to specific oncogenic pathways. In these cases, the development of targeted drug is therapeutically applicable. Drugs directed at oncogenic kinases, DNA repair enzymes, cell cycle checkpoints involved in the response to DNA damage, transcriptional regulation and key factors in tumor angiogenesis have been approved and incorporated into clinical protocols. However, for many of them, we still have to learn how best to exploit their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russo A, Incorvaia L, Malapelle U, et al. The tumor-agnostic treatment for patients with solid tumors: a position paper on behalf of the AIOM-SIAPEC/IAP-SIBIOC-SIF italian scientific societies [published online ahead of print, 2021 Aug 6]. Crit Rev Oncol Hematol. 2021;103436. https://doi.org/10.1016/j.critrevonc.2021.103436.

  2. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80.

    Article  CAS  PubMed  Google Scholar 

  3. Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci. 2014;39:465–74.

    Article  CAS  PubMed  Google Scholar 

  4. Pirker R. EGFR-directed monoclonal antibodies in non-small cell lung cancer. Target Oncol. 2013;8:47–53.

    Article  PubMed  Google Scholar 

  5. Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, et al. Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18:221–3.

    Article  CAS  PubMed  Google Scholar 

  6. Gristina V, La Mantia M, Galvano A, et al. Non-small cell lung cancer harboring concurrent EGFR genomic alterations: a systematic review and critical appraisal of the double dilemma. J Mol Pathol. 2021;2(2):173–96. https://doi.org/10.3390/jmp2020016.

  7. Mitsudomi T, Kobayashi Y. Afatinib in lung cancer harboring EGFR mutation in the LUX-Lung trials: six plus three is greater than seven? Transl Lung Cancer Res. 2016;5:446–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang JC-H, Wu Y-L, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141–51.

    Article  CAS  PubMed  Google Scholar 

  9. Ng KP, Hillmer AM, Chuah CTH, Juan WC, Ko TK, Teo ASM, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–8.

    Article  CAS  PubMed  Google Scholar 

  10. Larionov AA. Current therapies for human epidermal growth factor receptor 2-positive metastatic breast cancer patients. Front Oncol. 2018;8:89.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res. 2009;15:7479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gala K, Chandarlapaty S. Molecular pathways: HER3 targeted therapy. Clin Cancer Res. 2014;20:1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gelmon KA, Boyle FM, Kaufman B, Huntsman DG, Manikhas A, Di Leo A, et al. Lapatinib or trastuzumab plus taxane therapy for human epidermal growth factor receptor 2-positive advanced breast cancer: final results of NCIC CTG MA.31. J Clin Oncol. 2015;33:1574–83.

    Article  CAS  PubMed  Google Scholar 

  14. Gristina V, La Mantia M, et al. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung cancer. Pharmaceuticals (Basel). 2020 Dec 18;13(12):474. https://doi.org/10.3390/ph13120474. PMID: 33352844; PMCID: PMC7766858.

  15. Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med. 2016;374:54–61.

    Article  CAS  PubMed  Google Scholar 

  16. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13:828–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  CAS  PubMed  Google Scholar 

  18. Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17:676–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, et al. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell. 2016;30:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 2013;3:520–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28:370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15:273–91.

    Article  CAS  PubMed  Google Scholar 

  23. Dienstmann R, Rodon J, Serra V, Tabernero J. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 2014;13:1021–31.

    Article  CAS  PubMed  Google Scholar 

  24. Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016;16:20–33.

    Article  CAS  PubMed  Google Scholar 

  25. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20–37.

    Article  CAS  PubMed  Google Scholar 

  27. Ivy SP, de Bono J, Kohn EC. The “Pushmi-Pullyu” of DNA REPAIR: clinical synthetic lethality. Trends Cancer. 2016;2:646–56.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res CR. 2016;35:153.

    Article  PubMed  Google Scholar 

  29. Incorvaia L, Passiglia F, Rizzo S, “Back to a false normality”: new intriguing mechanisms of resistance to PARP inhibitors. Oncotarget. 2017;8(14):23891–904. https://doi.org/10.18632/oncotarget.14409. PMID: 28055979.

  30. Gori S, Barberis M, Bella MA, et al. Recommendations for the implementation of BRCA testing in ovarian cancer patients and their relatives. Crit Rev Oncol Hematol. 2019;140:67–72. https://doi.org/10.1016/j.critrevonc.2019.05.012.

  31. Incorvaia L, Fanale D, Bono M, et al. BRCA1/2 pathogenic variants in triple-negative versus luminal-like breast cancers: genotype-phenotype correlation in a cohort of 531 patients. Ther Adv Med Oncol. 2020;12:1758835920975326. Published 2020 Dec 16. https://doi.org/10.1177/1758835920975326.

  32. Weaver AN, Yang ES. Beyond DNA repair: additional functions of PARP-1 in cancer. Front Oncol. 2013;3:290.

    Google Scholar 

  33. Corsini LR, Fanale D, Passiglia F, et al. Monoclonal antibodies for the treatment of non-hematological tumors: a safety review. Expert Opin Drug Saf. 2018;17(12):1197–209. https://doi.org/10.1080/14740338.2018.1550068.

  34. Harnor SJ, Brennan A, Cano C. Targeting DNA-dependent protein kinase for cancer therapy. ChemMedChem. 2017;12:895–900.

    Article  CAS  PubMed  Google Scholar 

  35. Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15:1781–91.

    Article  CAS  PubMed  Google Scholar 

  36. Yazinski SA, Zou L. Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annu Rev Genet. 2016;50:155–73.

    Article  CAS  PubMed  Google Scholar 

  37. Rundle S, Bradbury A, Drew Y, Curtin NJ. Targeting the ATR-CHK1 axis in cancer therapy. Cancers. 2017;9

    Google Scholar 

  38. Matheson CJ, Backos DS, Reigan P. Targeting WEE1 kinase in cancer. Trends Pharmacol Sci. 2016;37:872–81.

    Article  CAS  PubMed  Google Scholar 

  39. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13:417–30.

    Article  PubMed  Google Scholar 

  40. Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell. 2018;

    Google Scholar 

  41. Pfister SX, Ashworth A. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov. 2017;16:241–63.

    Article  CAS  PubMed  Google Scholar 

  42. Dawson MA. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017;355:1147–52.

    Article  CAS  PubMed  Google Scholar 

  43. Larsen AK, Galmarini CM, D’Incalci M. Unique features of trabected in mechanism of action. Cancer Chemother Pharmacol. 2016;77:663–71.

    Article  CAS  PubMed  Google Scholar 

  44. Reck M, von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27(8):1227–34.

    Article  CAS  PubMed  Google Scholar 

  45. Miller K, Wang M, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76.

    Article  CAS  PubMed  Google Scholar 

  46. Escudier B, Pluzanska A, et al. AVOREN Trial investigators. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103–11.

    Article  PubMed  Google Scholar 

  47. Tabernero J, Yoshino T, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015 May;16(5):499–508.

    Article  CAS  PubMed  Google Scholar 

  48. Fuchs CS, Tomasek J, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014 Jan 4;383(9911):31–9.

    Article  CAS  PubMed  Google Scholar 

  49. Garon EB, Ciuleanu TE, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384(9944):665–73.

    Article  CAS  PubMed  Google Scholar 

  50. Perkins SL, Cole SW. Ziv-aflibercept (Zaltrap) for the treatment of metastatic colorectal cancer. Ann Pharmacother. 2014;48(1):93–8.

    Article  PubMed  Google Scholar 

  51. Chen H, Modiano MR, et al. A phase II multicentre study of ziv-aflibercept in combination with cisplatin and pemetrexed in patients with previously untreated advanced/metastatic non-squamous non-small cell lung cancer. Br J Cancer. 2014;110(3):602–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lambrechts D, Thienpont B, et al. Evaluation of efficacy and safety markers in a phase II study of metastatic colorectal cancer treated with aflibercept in the first-line setting. Br J Cancer. 2015;113(7):1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brose MS, Nutting CM, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jager D, Ma JH, et al. Sorafenib treatment of advanced renal cell carcinoma patients in daily practice: the large international PREDICT study. Clin Genitourin Cancer. 2015;13(2):156–64.e1.

    Article  CAS  PubMed  Google Scholar 

  55. Bruix J, Takayama T, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015;16(13):1344–54.

    Article  CAS  PubMed  Google Scholar 

  56. Escudier B, Porta C, et al. Randomized, controlled, double-blind, cross-over trialassessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES Study. J Clin Oncol. 2014;32(14):1412–8.

    Article  CAS  PubMed  Google Scholar 

  57. Incorvaia L, Fanale D, Vincenzi B, et al. Type and gene location of KIT mutations predict progression-free survival to first-line imatinib in gastrointestinal stromal tumors: a look into the exon. Cancers (Basel). 2021;13(5):993. Published 2021 Feb 27. https://doi.org/10.3390/cancers13050993.

  58. Demetri GD, van Oosterom AT, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.

    Article  CAS  PubMed  Google Scholar 

  59. Bergmann L, Maute L, et al. A prospective randomised phase-II trial with gemcitabine versus gemcitabine plus sunitinib in advanced pancreatic cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Eur J Cancer. 2015;51(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  60. Coens C, van der Graaf WT, et al. Health-related quality-of-life results from PALETTE: a randomized, double-blind, phase 3 trial of pazopanib versus placebo in patients with soft tissue sarcoma whose disease has progressed during or after prior chemotherapy-a European Organization for research and treatment of cancer soft tissue and bone sarcoma group global network study (EORTC 62072). Cancer. 2015;121(17):2933–41.

    Article  CAS  PubMed  Google Scholar 

  61. Rini BI, Escudier B, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9.

    Article  CAS  PubMed  Google Scholar 

  62. Motzer RJ, Escudier B, et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013;14(6):552–62.

    Article  CAS  PubMed  Google Scholar 

  63. Demetri GD, Reichardt P, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):295–302.

    Article  CAS  PubMed  Google Scholar 

  64. Nannini M, Nigro MC, Vincenzi B, Personalization of regorafenib treatment in metastatic gastrointestinal stromal tumours in real-life clinical practice. Ther Adv Med Oncol. 2017;9(12):731–739. https://doi.org/10.1177/1758834017742627. Epub 2017 Dec 19. PMID: 29449894.

  65. Nannini M, Rizzo A, Nigro MC, et al. Standard versus personalized schedule of regorafenib in metastatic gastrointestinal stromal tumors: a retrospective, multicenter, real-world study [published online ahead of print, 2021 Aug 2]. ESMO Open. 2021;6(4):100222. https://doi.org/10.1016/j.esmoop.2021.100222.

  66. Bruix J, Qin S, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66.

    Article  CAS  PubMed  Google Scholar 

  67. Grothey A, Van Cutsem E, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):303–12.

    Article  CAS  PubMed  Google Scholar 

  68. Santoni M, Heng DY, Bracarda S, et al. Real-world data on cabozantinib in previously treated patients with metastatic renal cell carcinoma: focus on sequences and prognostic factors. Cancers (Basel). 2019;12(1):84. Published 2019 Dec 30. https://doi.org/10.3390/cancers12010084.

  69. Choueiri TK, Escudier B, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schlumberger M, Elisei R, et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol. 2017;28(11):2813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol. 2013;9(8):1083–92.

    Article  CAS  PubMed  Google Scholar 

  72. Santoni M, Massari F, Grande E, et al. Cabozantinib in pretreated patients with metastatic renal cell carcinoma with sarcomatoid differentiation: a real-world study [published online ahead of print, 2021 Aug 2]. Target Oncol. 2021. https://doi.org/10.1007/s11523-021-00828-z.

  73. Motzer RJ, Hutson TE, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82.

    Article  CAS  PubMed  Google Scholar 

  74. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.

    Article  PubMed  Google Scholar 

  75. Chau NG, Haddad RI. Vandetanib for the treatment of medullary thyroid cancer. Clin Cancer Res. 2013;19(3):524–9.

    Article  CAS  PubMed  Google Scholar 

  76. Incorvaia L, Bronte G, et al. Beyond evidence-based data: scientific rationale and tumor behavior to drive sequential and personalized therapeutic strategies for the treatment of metastatic renal cell carcinoma. Oncotarget. 2016;7(16):21259–71. https://doi.org/10.18632/oncotarget.7267.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Massihnia D, Galvano A, et al. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget. 2016;7(37):60712–22. https://doi.org/10.18632/oncotarget.10858.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hasskarl J. Everolimus. Recent Results Cancer Res. 2014;201:373–92.

    Article  CAS  PubMed  Google Scholar 

  79. Sherbet GV. Therapeutic potential of thalidomide and its analogues in the treatment of cancer. Anticancer Res. 2015;35(11):5767–72.

    CAS  PubMed  Google Scholar 

  80. El-Aarag BY, Kasai T, et al. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int Immunopharmacol. 2014;21(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  81. Leuci V, Maione F, et al. Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity. J Transl Med. 2016;14(1):119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Petrylak DP, Vogelzang NJ, et al. Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2015;16(4):417–25.

    Article  CAS  PubMed  Google Scholar 

  83. Ullenhag GJ, Rossmann E, Liljefors M. A phase I dose-escalation study of lenalidomide in combination with gemcitabine in patients with advanced pancreatic cancer. PLoS One. 2015;10(4):e0121197.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Garattini S, Fuso Nerini I, D’Incalci M. Not only tumor but also therapy heterogeneity. Ann Oncol. 2017;29(1):13–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Incorvaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Incalci, M., Monti, E., Incorvaia, L., Castiglia, M., Russo, A., Bazan, V. (2021). Targeted Therapy. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics