Skip to main content

Some Notes About Distribution Frame Multipliers

  • Chapter
  • First Online:
Landscapes of Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 447 Accesses

Abstract

Inspired by a recent work about distribution frames, the definition of multiplier operator is extended in the rigged Hilbert spaces setting and a study of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. T. Ali, J. P. Antoine, J. P. Gazeau, Continuous frames in Hilbert spaces, Annals of Physics, 222, (1993), 1–37.

    Article  MathSciNet  Google Scholar 

  2. J.-P. Antoine, A. Inoue, C. Trapani, Partial *-algebras and their Operator Realizations, Kluwer, Dordrecht, (2002).

    Book  Google Scholar 

  3. A. A. Arefijamaal, R. A. Kamyabi Gol, R. Raisi Tousi, N. Tavallaei, A new approach to continuous Riesz bases, J. Sciences, Islamic Republic of Iran, 24(1), (2012), 63–69.

    MathSciNet  Google Scholar 

  4. F. Bagarello, A. Inoue, C.Trapani, Non-self-adjoint Hamiltonians defined by Riesz bases, J. Math. Phys., 55, (2014), 033501.

    Article  MathSciNet  Google Scholar 

  5. F. Bagarello, H. Inoue, C. Trapani, Biorthogonal vectors, sesquilinear forms, and some physical operators, J. Math. Phys., 59, (2018), 033506.

    Article  MathSciNet  Google Scholar 

  6. R. Balan, P.G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames I. Theory, J. Fourier Anal. Appl., 12, (2006), 105–143.

    Google Scholar 

  7. R. Balan, P.G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames II. Gabor systems, J. Fourier Anal. Appl., 12, (2006), 309–344.

    Google Scholar 

  8. P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl., 325(1), (2007), 571–585.

    Article  MathSciNet  Google Scholar 

  9. P. Balazs, D. T. Stoeva, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl., 422(2), (2015), 981–994.

    Article  MathSciNet  Google Scholar 

  10. P. Balazs, D. Bayer, A. Rahimi, Multipliers for continuous frames in Hilbert spaces, J. Phys. A: Math. Theor., 45, (2012), 244023.

    Article  MathSciNet  Google Scholar 

  11. F. Batayneh, M. Mitkovski, Localized frames and compactness, J. Fourier Anal. Appl., 22, (2016), 568–590.

    Article  MathSciNet  Google Scholar 

  12. G. Bellomonte, Continuous frames for unbounded operators, arXiv:1912.13097, (2019).

    Google Scholar 

  13. G. Bellomonte, R. Corso, Frames and weak frames for unbounded operators, Adv. Comput. Math., 46(2), (2020), Paper No. 38, 21pp.

    Google Scholar 

  14. G. Bellomonte and C. Trapani, Riesz-like bases in Rigged Hilbert Spaces, Zeitschr. Anal. Anwen., 35, (2016), 243–265.

    Article  MathSciNet  Google Scholar 

  15. J. Benedetto, G. Pfander, Frame expansions for Gabor multipliers, Applied and Computational Harmonic Analysis, 20(1), (2006), 26–40.

    Article  MathSciNet  Google Scholar 

  16. O. Christensen, An Introduction to Frames and Riesz Bases, Boston, Birkhäuser, (2016).

    MATH  Google Scholar 

  17. R. Corso, Sesquilinear forms associated to sequences on Hilbert spaces, Monatshefte für Mathematik, 189(4), (2019), 625–650.

    Article  MathSciNet  Google Scholar 

  18. R. Corso, Generalized frame operator, lower semi-frames and sequences of translates, arXiv:1912.03261, (2019)

    Google Scholar 

  19. I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory, 34(4), (1988), 605–612.

    Article  MathSciNet  Google Scholar 

  20. I. Daubechies, T. Paul, Time-frequency localization operators–a geometric phase space approach. II. The use of dilations, Inverse Problems, 4(3), (1988), 661–680.

    Google Scholar 

  21. H. G. Feichtinger, K. Nowak, A first survey of Gabor multipliers, in: Advances in Gabor analysis, edited by H. G. Feichtinger and T. Strohmer, Boston Birkhäuser, Applied and Numerical Harmonic Analysis, 99–128, (2003).

    Google Scholar 

  22. M. Fornasier, K. Gröchenig, Intrinsic localization of frames, Constr. Approx., 22, (2005), 395–415.

    Article  MathSciNet  Google Scholar 

  23. M. Fornasier, H. Rauhut, Continuous frames, function spaces, and the discretization problem, J. Fourier Anal. Appl., 11(3), (2005), 245–287.

    Article  MathSciNet  Google Scholar 

  24. J-P. Gabardo, D. Han, Frames associated with measurable spaces, Adv. Comput. Math., 18, (2003), 127–147.

    Article  MathSciNet  Google Scholar 

  25. L. \(\mathrm {G}\check {a}\mathrm {vruta}\), Frames and operators, Appl. Comp. Harmon. Anal., 32 (2012), 139–144.

    Google Scholar 

  26. I.M. Gel’fand, G.E. Shilov, E. Saletan, Generalized Functions, Vol.III, Academic Press, New York, (1967).

    Google Scholar 

  27. I. M. Gel’fand, N. Ya. Vilenkin, Generalized Functions, Vol.IV, Academic Press, New York, (1964).

    Google Scholar 

  28. K. Gröchenig, Localized frames are finite unions of Riesz sequences, Adv. Comput. Math., 18, (2003), 149–157.

    Article  MathSciNet  Google Scholar 

  29. K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl., 10, (2004), 105–132.

    Article  MathSciNet  Google Scholar 

  30. K. Gröchenig, Representation and approximation of pseudodifferential operators by sums of Gabor multipliers, Appl. Anal., 90(3–4), (2010), 385–401.

    MathSciNet  MATH  Google Scholar 

  31. C. Heil A Basis Theory Primer, Expanded Edition, Birkhäuser/Springer, New York, (2011).

    Google Scholar 

  32. J. Horvath, Topological Vector Spaces and Distributions, Addison-Wesley, 1966.

    MATH  Google Scholar 

  33. G. Kaiser, A friendly guide to wavelets, Birkhäuser, Boston, (1994).

    MATH  Google Scholar 

  34. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, (1966).

    Book  Google Scholar 

  35. F. Li, P. Li, A. Liu, Decomposition of analysis operators and frame ranges for continuous frames, Numerical Functional Analysis and Optimization, 37, 2, (2016), 238–252.

    Article  MathSciNet  Google Scholar 

  36. R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators, Operator Theory: Operator Algebras and Applications, Part 1, (Proc. Symp. Pure Mathematics vol 51), (Providence, RI: American Mathematical Society), (1990), 425–444.

    Google Scholar 

  37. R. Rochberg, A correspondence principle for Toeplitz and Calderón-Toeplitz operators, Israel Math. Conf. Proc., 5, (1992), 229–243.

    MathSciNet  MATH  Google Scholar 

  38. K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht, (2012).

    Book  Google Scholar 

  39. M. Speckbacher, P. Balasz, Frames, their relatives and reproducing kernel Hilbert spaces, arxiv:1704.02818, (2017).

    Google Scholar 

  40. D. T. Stoeva, P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal., 33(2), (2012), 292–299.

    Article  MathSciNet  Google Scholar 

  41. D. T. Stoeva, P. Balazs, Canonical forms of unconditionally convergent multipliers, J. Math. Anal. Appl., 399(1), (2013), 252–259.

    Article  MathSciNet  Google Scholar 

  42. D. T. Stoeva, P. Balazs, Riesz bases multipliers, In M. Cepedello Boiso, H. Hedenmalm, M. A. Kaashoek, A. Montes-Rodríguez, and S. Treil, editors, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, vol 236 of Operator Theory: Advances and Applications, 475–482, Birkhäuser, Springer Basel, (2014).

    Google Scholar 

  43. D. T. Stoeva, P. Balazs, The dual frame induced by an invertible frame multiplier, in Sampling Theory and Applications (SampTA), 2015 International Conference on, IEEE, (2015), 101–104.

    Google Scholar 

  44. D. T. Stoeva, P. Balazs, On the dual frame induced by an invertible frame multiplier, Sampling Theory in Signal and Image Processing, 15, (2016), 119–130.

    MathSciNet  MATH  Google Scholar 

  45. D. T. Stoeva, P. Balazs, A survey on the unconditional convergence and the invertibility of multipliers with implementation, in Sampling - Theory and Applications (A Centennial Celebration of Claude Shannon), S. D. Casey, K. Okoudjou, M. Robinson, B. Sadler (Ed.), Applied and Numerical Harmonic Analysis Series, Springer, (2020).

    Google Scholar 

  46. C. Trapani, S. Triolo, F. Tschinke, Distribution Frames and Bases, J. Fourier Anal. Appl., 25, (2019), 2109–2140.

    Article  MathSciNet  Google Scholar 

  47. C. Trapani, F. Tschinke, Partial Multiplication of Operators in Rigged Hilbert, Int. Equ. Operator Theory, 51(4), (2005), 583–600.

    Article  MathSciNet  Google Scholar 

  48. F. Tschinke, Riesz-Fischer maps, Semiframes and Frames in rigged Hilbert spaces, arXiv:1910.14447, (2019).

    Google Scholar 

Download references

Acknowledgements

R.C. has been partially supported by the “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni” (GNAMPA-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosario Corso or Francesco Tschinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corso, R., Tschinke, F. (2020). Some Notes About Distribution Frame Multipliers. In: Boggiatto, P., et al. Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-56005-8_6

Download citation

Publish with us

Policies and ethics