Skip to main content

Time–Frequency Localization Operators: State of the Art

  • Chapter
  • First Online:
Landscapes of Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 495 Accesses

Abstract

We present localization operators via the short-time Fourier transform. For both modulation and ultra-modulation spaces framework, well-known results about boundedness and Schatten-von Neumann class are reported. Asymptotic eigenvalues’ distribution and decay and smoothness properties for L 2-eigenfunctions are exhibited. Eventually, we make a conjecture about smoothness of L 2-eigenfunctions for localization operators with Gelfand–Shilov windows and symbols in ultra-modulation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. D. Abreu, K. Gröchenig, and J. L. Romero. On accumulated spectrograms. Trans. Amer. Math. Soc., 368(5):3629–3649, 2016.

    Article  MathSciNet  Google Scholar 

  2. F. Bastianoni and N. Teofanov. Subexponential decay and regularity estimates for eigenfunctions of localization operators, 2020. J. Pseudo-Differ. Op. and Appl., to appear. ArXiv:2004.12947v2.

    Google Scholar 

  3. F. Bastianoni, E. Cordero and F. Nicola. Decay and Smoothness for Eigenfunctions of Localization Operators. J. Math. Anal. Appl., 492(2): 124480, 2020. https://doi.org/10.1016/j.jmaa.2020.124480.

  4. F. A. Berezin. Wick and anti-Wick symbols of operators. Mat. Sb. (N.S.), 86(128):578–610, 1971.

    MathSciNet  Google Scholar 

  5. P. Boggiatto, E. Cordero, and K. Gröchenig. Generalized anti-Wick operators with symbols in distributional Sobolev spaces. Integral Equations Operator Theory, 48(4):427–442, 2004.

    Article  MathSciNet  Google Scholar 

  6. J. Chung, S.-Y. Chung and D. Kim. Characterizations of the Gelfand-Shilov Spaces Via Fourier Transform. Proc. Amer. Math. Soc., 124(7):2101–2108, 1996.

    Article  MathSciNet  Google Scholar 

  7. E. Cordero and K. Gröchenig. Time-frequency analysis of localization operators. J. Funct. Anal., 205(1):107–131, 2003.

    Article  MathSciNet  Google Scholar 

  8. E. Cordero and K. Gröchenig. Necessary conditions for Schatten class localization operators. Proc. Amer. Math. Soc., 133(12):3573–3579, 2005.

    Article  MathSciNet  Google Scholar 

  9. E. Cordero, S. Pilipović, L. Rodino, and N. Teofanov. Localization operators and exponential weights for modulation spaces. Mediterr. J. Math., 2(4):381–394, 2005.

    Article  MathSciNet  Google Scholar 

  10. A. Córdoba and C. Fefferman. Wave packets and Fourier integral operators. Comm. Partial Differential Equations, 3(11):979–1005, 1978.

    Article  MathSciNet  Google Scholar 

  11. I. Daubechies. Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory, 34(4):605–612, 1988.

    Article  MathSciNet  Google Scholar 

  12. H. G. Feichtinger. Modulation spaces on locally compact abelian groups. In Technical rep., University of Vienna, 1983, and also in “Wavelets and Their Applications”, pages 99–140. M. Krishna, R. Radha, S. Thangavelu, editors, Allied Publishers, 2003.

    Google Scholar 

  13. H. G. Feichtinger. and K. Nowak. A Szegö-type theorem for Gabor-Toeplitz localization operators. Michigan Math. J.9, no. 1, 13–21, 2001.

    Google Scholar 

  14. C. Fernández and A. Galbis. Compactness of time-frequency localization operators on \(L^2(\mathbb {R}^d)\). J. Funct. Anal., 233(2):335–350, 2006.

    Google Scholar 

  15. C. Fernández and A. Galbis. Some remarks on compact Weyl operators. Integral Transforms Spec. Funct., 18(7–8):599–607, 2007.

    Article  MathSciNet  Google Scholar 

  16. G. B. Folland. Harmonic Analysis in Phase space. Princet. University Press, Princeton, NJ, 1989.

    Google Scholar 

  17. Y. V. Galperin and S. Samarah. Time-frequency analysis on modulation spaces \(M^{p,q}_m\), 0 < p, q ≤. Appl. Comput. Harmon. Anal., 16(1):1–18, 2004.

    Google Scholar 

  18. I. M. Gelfand and G. E. Shilov. Generalized Functions Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer. Academic Press, New York-London, 1967.

    Google Scholar 

  19. I. M. Gelfand and G. E. Shilov. Generalized Functions Vol. 2. Academic Press, New York-London, 1968.

    Google Scholar 

  20. K. Gröchenig. Foundations of time-frequency analysis. Appl. and Num. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2001.

    Google Scholar 

  21. W. Guo, J. Chen, D. Fan and G. Zhao. Characterizations of Some Properties on Weighted Modulation and Wiener Amalgam Spaces Michigan Math. J., 68:451–482, 2019.

    Google Scholar 

  22. Jingde Du, M. W. Wong and Zhaohui Zhang. Trace class norm inequalities for localization operators. Integral Equations Operator Theory41, no. 4, 497–503, DOI 10.1007/BF0122106. MR1857804 (2002f:47069), 2001.

    Google Scholar 

  23. S. Pilipović. Tempered ultradistributions. Bol. Unione Mat. Ital., 7(2-B):235–251, 1988.

    Google Scholar 

  24. J. Ramanathan and P. Topiwala. Time-frequency localization and the spectrogram. Appl. Comp. Harmon. Anal.1, no. 2, 209–215, 1994.

    Google Scholar 

  25. M. A. Shubin. Pseudodifferential operators and spectral theory. Springer-Verlag, Berlin, second edition, 2001.

    Google Scholar 

  26. N. Teofanov. Ultradistributions and Time-Frequency Analysis. Pseudo-Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol 164. Birkhuser Basel, 2006.

    Google Scholar 

  27. N. Teofanov. Gelfand-Shilov spaces and localization operators. Funct. Anal. Approx. Comput., 7(2):135–158, 2015.

    MathSciNet  MATH  Google Scholar 

  28. N. Teofanov. Continuity and Schatten–von Neumann properties for localization operators on modulation spaces. Mediterr. J. Math., 13(2):745–758, 2016.

    Article  MathSciNet  Google Scholar 

  29. J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal., 207(2):399–429, 2004.

    Google Scholar 

  30. J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II. Ann. Global Anal. Geom., 26(1):73–106, 2004.

    Google Scholar 

  31. J. Toft. Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes. Anal. and Appl., 15(03):353–389, 2017.

    Article  MathSciNet  Google Scholar 

  32. J. Toft. Images of function and distribution spaces under the Bargmann transform. J. of Pseudo-Differential Op. and App., 8 :83–139, 2017.

    Article  MathSciNet  Google Scholar 

  33. M. W. Wong. Wavelet transforms and localization operators. Operator Theory: Advances and Applications, volume 136, Birkhäuser Verlag, Basel, 2002.

    Google Scholar 

Download references

Acknowledgements

I express my gratitude to Professor Elena Cordero for her time and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bastianoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastianoni, F. (2020). Time–Frequency Localization Operators: State of the Art. In: Boggiatto, P., et al. Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-56005-8_4

Download citation

Publish with us

Policies and ethics