Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 142))

  • 405 Accesses

Abstract

The methodology for detecting true chaos (in terms of nonlinear dynamics) developed on the example of a structure composed of two beams with a small clearance is outlined. Euler-Bernoulli hypothesis is employed, and the contact interaction between beams follows Kantor model. The complex nonlinearity results from von Kármán geometric nonlinearity as well as the nonlinearity implied by the contact interaction. The governing PDEs are reduced to ODEs by the second-order finite difference method (FDM). The obtained system of equations is solved by Runge-Kutta method of different accuracies. To purify the signal from errors introduced by numerical methods, the principal component analysis is employed and the sign of the first Lyapunov exponent is estimated by Kantz, Wolf and Rosenstein methods [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krysko, A.V., Awrejcewicz, J., Papkova, I.V., Saltykova, O.A., Krysko, A.V.: On reliability of chaotic dynamics of two Euler-Bernoulli beams with a small clearance. Int. J. Non-Linear. Mech. 104, 8–18 (2018)

    Article  Google Scholar 

  2. Lozi, R.: Can we trust in numerical computations of chaotic solutions of dynamical systems. In: Letellier, Ch., Gilmore, R. (eds.) Topology and Dynamics of Chaos in Celebration of Robert Gilmore’s 70th Birthday, pp. 63–98. World Scientific, Singapore (2013)

    Chapter  Google Scholar 

  3. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  4. Banks, J., Brooks, J., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Month. 99(4), 332–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Knudsen, C.: Chaos without periodicity. Am. Math. Mon. 101, 563–565 (1994)

    Article  MATH  Google Scholar 

  6. Gulick, D.: Encounters with Chaos. McGraw-Hill, New York (1992)

    MATH  Google Scholar 

  7. Awrejcewicz, J., Krysko, V.A., Papkova, I.V., Krysko, A.V.: Deterministic Chaos in One-Dimensional Continuous Systems. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  8. Süli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  9. Fehlberg, E.: Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems. NASA Tech. Rep. 315 (1969)

    Google Scholar 

  10. Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6(1–2), 61–71 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Soft. 16, 201–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69(3), 331–371 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meyer, Y.: Ondelettes, fonctions splines et analyses graduees. Lecture Notes for University, Torino (1986)

    Google Scholar 

  15. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grossman, A., Morlet, S.: Decomposition of Hardy functions into square separable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meyer, Y.: Ondelettes et functions splines. Ecole Polytech. Paris, Tech. Rep. Semin. EDP (1986)

    Google Scholar 

  18. Meyer, Y.: Wavelets: Algorithms and Applications. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  19. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Article  Google Scholar 

  20. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kantor, B.Y., Bohatyrenko, T.L.: The method for solving contact problems in the nonlinear theory of shells. Rep. Acad. Sci. Ukr. SSR A(1), 18–21 (1986)

    Google Scholar 

  23. Euler, L.: Sur la force des colones. Memories de L’Academie de Berlin 13, 252–282 (1757)

    Google Scholar 

  24. Krysko, A.V., Awrejcewicz, J., Kutepov, I.E., Zagniboroda, N.A., Dobriyan, V., Krysko, V.A.: Chaotic dynamics of flexible Euler-Bernoulli beams. Chaos 23(4) 043130-1 – 043130-25 (2013)

    Google Scholar 

  25. Krysko, A.V., Awrejcewicz, J., Saltykova, O.A., Zhigalov, M.V., Krysko, V.A.: Investigations of chaotic dynamics of multi-layer beams using taking into account rotational inertial effects. Commun. Nonlinear. Sci. Num. Simul. 19(8), 2568–2589 (2014)

    Article  MATH  Google Scholar 

  26. Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear. Mech. 58(2014), 233–257 (2003)

    Google Scholar 

  27. Sedighi, H.M., Shirazi, K.H., Zare, J.: Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He’s parameter expanding method. Lat. Am. J. Sol. Struct. 9(4), 443–452 (2012)

    Article  Google Scholar 

  28. Kármán, T.: Festigkeitsprobleme in Maschinenbau. Encykle D Math. Wiss. 4(4), 311–385 (1910)

    MATH  Google Scholar 

  29. Sylvester, J.J.: On the reduction of a bilinear quantic of the nth order to the form of a sum of n products by a double orthogonal substitution. Mess. Math. 19, 42–46 (1889)

    Google Scholar 

  30. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications. Part I: Theory. J. Sound. Vib. 252, 527–544 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Phychol. 24, 417–441 (1933)

    Article  MATH  Google Scholar 

  32. Krysko, A.V., Awrejcewicz, J., Papkova, I.V., Szymanowska, O., Krysko, V.A.: Principal component analysis in the nonlinear dynamics of beams: purification of the signal from noise induced by the nonlinearity of beam vibrations. Adv. Math. Phys. 2017, 1–9 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Awrejcewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awrejcewicz, J., Krysko, A.V., Zhigalov, M.V., Krysko, V.A. (2021). Reliability of Chaotic Vibrations of Euler-Bernoulli Beams with Clearance. In: Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields. Advanced Structured Materials, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-55993-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55993-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55992-2

  • Online ISBN: 978-3-030-55993-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics