Skip to main content

Continuum Traffic Flow Modelling: Network Approximation, Flow Approximation

  • Conference paper
  • First Online:
Traffic and Granular Flow 2019

Part of the book series: Springer Proceedings in Physics ((volume 252))

Abstract

Continuum traffic modeling is designed for very large networks and relies on a double approximation. The network is assumed to be dense and is described as a two-dimensional medium, whereas the traffic in the network is described as a bi-dimensional fluid. Traffic on major arterials is described separately using the GSOM (Generic second order model) approach. The dense network is divided into macro-cells, typically one to 10 km in size. The dynamics of traffic in the two-dimensional medium result from the interplay of supply and demand inside and between macro-cells. The paper addresses important modeling issues such as how to estimate the average densities, how to determine the equilibrium traffic supply and demand functions, and how to evaluate traffic supplies and demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Aghamohammadi, J.A. Laval, Dynamic Traffic Assignment using the Macroscopic Fundamental Diagram: A Review of Vehicular and Pedestrian Flow Models (2018). arXiv:1801.02130

  2. J.A. Carrillo, S. Martin, M.T. Wolfram, An improved version of the Hughes model for pedestrian flow. Math. Mod. Methods Appl. Sci. 26(04), 671–697 (2016)

    Article  MathSciNet  Google Scholar 

  3. H.W. Ho, S.C. Wong, Two-dimensional continuum modeling approach to transportation problems. J. Trans. Syst. Eng. Inf. Technol. 6(6), 53–68 (2006)

    Google Scholar 

  4. L. Huang, S.C. Wong, M. Zhang, C.W. Shu, W.H. Lam, Revisiting Hughes dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Trans. Res. Part B: Methodol. 43(1), 127–141 (2009)

    Google Scholar 

  5. Y. Jiang, S.C. Wong, H.W. Ho, P. Zhang, R. Liu, A. Sumalee, A dynamic traffic assignment model for a continuum transportation system. Trans. Res. Part B: Methodol. 45(2), 343–363 (2011)

    Article  Google Scholar 

  6. M.M. Khoshyaran, J.P. Lebacque, Homogeneous bidimensional traffic flow model. IFAC-PapersOnLine 51(9), 61–66 (2018)

    Article  Google Scholar 

  7. J.P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in Transportation and Traffic Theory. Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon, France (1996)

    Google Scholar 

  8. J.P. Lebacque, M.M. Khoshyaran, First-order macroscopic traffic flow models: intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. Proceedings of the 16th International Symposium on Transportation and Traffic Theory University of Maryland, College Park (2005)

    Google Scholar 

  9. J.P. Lebacque, M.M. Khoshyaran, A variational formulation for higher order macroscopic traffic flow models of the GSOM family. Trans. Res. Part B 57, 245–265 (2013)

    Google Scholar 

  10. J.P. Lebacque, S. Mammar, H.H. Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory 2007. Proceedings of the 17th International Symposium on Transportation and Traffic Theory (2007)

    Google Scholar 

  11. S. Mollier, M.L. Delle Monache, C. Canudas-De-Wit, B. Seibold, Two-dimensional macroscopic model for large scale traffic networks (2018)

    Google Scholar 

  12. T. Saumtally, J.P. Lebacque, H. Haj-Salem, Static traffic assignment with side constraints in a dense orthotropic network. Procedia-Soc. Behav. Sci. 20, 465–474 (2011)

    Article  Google Scholar 

  13. T. Saumtally, J-P. Lebacque, H. Haj-Salem, A dynamical two-dimensional traffic model in an anisotropic network. Net. Heterog. Media 663–684 (2013)

    Google Scholar 

  14. K. Sossoe, Modeling of multimodal transportation systems of large networks (Doctoral dissertation, Université Paris-Est) (2017)

    Google Scholar 

  15. K.S. Sossoe, J.-P. Lebacque, A. Mokrani, H. Haj-Salem, Traffic flow within a two-dimensional continuum anisotropic network. Trans. Res. Procedia 10, 217–225 (2015)

    Article  Google Scholar 

  16. K.S. Sossoe, J.P. Lebacque, Reactive dynamic assignment for a bi-dimensional traffic flow model. In International Conference on Systems Science (Springer, Cham, 2016), pp. 179–188

    Google Scholar 

  17. A. Taguchi, M. Iri, Continuum approximation to dense networks and its application to the analysis of urban road networks, in Applications (Springer, Berlin, Heidelberg, 1982), pp. 178–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Patrick Lebacque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khoshyaran, M.M., Lebacque, JP. (2020). Continuum Traffic Flow Modelling: Network Approximation, Flow Approximation. In: Zuriguel, I., Garcimartin, A., Cruz, R. (eds) Traffic and Granular Flow 2019. Springer Proceedings in Physics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-030-55973-1_62

Download citation

Publish with us

Policies and ethics