Skip to main content

Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries

  • 446 Accesses

Part of the Springer Proceedings in Physics book series (SPPHY,volume 252)

Abstract

Voronoi diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages—arithmetic or harmonic, or weighted with density.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55973-1_5
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   159.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55973-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   209.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2

References

  1. D. Oeding, Verkehrsbelastung und dimensionierung von gehwegen und anderen anlagen des fussgängerverkehrs. Forschungsbericht 22, Technische Hochschule Braunschweig, in German (1963)

    Google Scholar 

  2. J.J. Fruin, Pedestrian Planning and Design (Elevator World, 1971)

    Google Scholar 

  3. V.M. Predtechenskii, A.I. Milinskii, Planning for foot traffic flow in buildings. Amerind Publishing, New Delhi, Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov (Stroiizdat Publishers, Moscow, 1978), p. 1969

    Google Scholar 

  4. U. Weidmann. Transporttechnik der Fussgänger. In Schriftenreihe des IVT, volume 90. Institut für Verkehrsplannung, Transporttechnik, Strassen- und Eisenbahnbau (1993)

    Google Scholar 

  5. A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, The fundamental diagram of pedestrian movement revisited. J. Statist. Mech. Theory Exp. 2005(10), P10002 (2005)

    CrossRef  Google Scholar 

  6. D. Helbing, A. Johansson, H.Z. Al-Abideen, Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109 (2007)

    ADS  CrossRef  Google Scholar 

  7. H. Fradi, J.-L. Dugelay, Crowd density map estimation based on feature tracks, in MMSP, 15th International Workshop on Multimedia Signal Processing, September 30-October 2, 2013 (Pula, Italy, Pula, ITALY, 2013), p. 2013

    Google Scholar 

  8. B. Steffen, A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A: Statist. Mech. Appl. 389(9), 1902–1910 (2010)

    Google Scholar 

  9. A.N. Marana, L. da Fontoura Costa, R.A Lotufo, S.A Velastin, Estimating crowd density with minkowski fractal dimension, in Acoustics, Speech, and Signal Processing. Proceedings IEEE International Conference, vol. 6, pp. 3521–3524 (1999)

    Google Scholar 

  10. M. Jiang, J. Huang, X. Wang, J. Tang, C. Wu, An approach for crowd density and crowd size estimation. J. Softw. 9(3), 757–762 (2014)

    CrossRef  Google Scholar 

  11. J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Statist. Mech. Theory Exp. 2011(06), P06004 (2011)

    CrossRef  Google Scholar 

  12. D. Duives, W. Daamen, S. Hoogendoorn, Quantification of the level of crowdedness for pedestrian movements. Physica A: Statist. Mech. Appl. 427, 162–180 (2015)

    ADS  CrossRef  Google Scholar 

  13. A. Tordeux, J. Zhang, B. Steffen, A. Seyfried, Quantitative comparison of estimations for the density within pedestrian streams. J. Statist. Mech. Theory Exp. 2015(6), P06030 (2015)

    MathSciNet  CrossRef  Google Scholar 

  14. A. Nicolas, M. Kuperman, S. Ibaez, S. Bouzat, C. Appert-Rolland, Mechanical response of dense pedestrian crowds to the crossing of intruders. Scient. Reports 9, 105 (2019)

    ADS  CrossRef  Google Scholar 

  15. J. Liddle, A. Seyfried, B. Steffen, Analysis of bottleneck motion using voronoi diagrams, in R.D. Peacock, E.D. Kuligowski, J.D. Averill (eds.) Pedestrian and Evacuation Dynamics (Springer US, Boston, MA. 2011) , pp. 833–836

    Google Scholar 

  16. J.H. Wardrop, Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. 1(3), 325–362 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohcine Chraibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chraibi, M., Steffen, B., Tordeux, A. (2020). Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries. In: Zuriguel, I., Garcimartin, A., Cruz, R. (eds) Traffic and Granular Flow 2019. Springer Proceedings in Physics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-030-55973-1_5

Download citation