Skip to main content

Hybrid Atom–Ion Systems

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 562 Accesses

Abstract

Ion–neutral interactions play a major role in reactions relevant for biochemistry [1], have an impact on the chemistry of the interstellar medium [2], and contribute to different reactions in plasma physics [3]. Therefore, revealing the ultimate nature of ion–neutral interactions is crucial for chemical sciences. Luckily enough, hybrid atom–ion systems are specially designed for the task. These hybrid systems are the result of combining the best of two worlds, as shown in Fig. 9.1, ultracold atoms from ultracold physics and cold ions. Additionally, atom–ion hybrid systems, owing their versatility and degree of control, have potential applications in high-precision spectroscopy [4], quantum information [5,6,7,8], condensed matter physics [9, 10], and cold chemistry [11, 12]. In particular, cold chemistry in hybrid systems is the topic of the present chapter.

Hybrid atom–ion systems emerge in the interplay between cold ions and ultracold atoms. Hybrid atom–ion systems may have implications in all the different research areas enumerated in the rectangle with rounded vertices

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This system is usually considered as a quantum hybrid system. However, this chapter mostly focuses on atom–ion systems from a classical and semi-classical framework. Thus, we have decided to use the term hybrid systems instead of the quantum hybrid system.

  2. 2.

    The first demonstration of the idea of laser cooling was done for ions in the pioneering work in Neuhauser et al. [26].

  3. 3.

    This configuration is also known as a linear Paul trap.

  4. 4.

    Equation (9.6) are Mathieu differential equations that can be solved analytically by means of a recurrence relation leading to a convergent continued fraction of the relevant parameters [27, 28].

  5. 5.

    In general, the solution of Mathieu’s equations for an ion in a Paul trap is characterized by \(\beta _i=\sqrt {a_i+\frac {q_i^2}{2}}\), which is related to the stability of the solution [27, 28].

  6. 6.

    The Coulomb coupling parameter is generally defined in terms of T as \(\Gamma _{C}=\frac {V}{E_{\mathrm {kin}}}=\frac {(Ze)^2}{4\pi \epsilon _0 r_{WS} k_{B}T}\), which is called the temperature of the ions; however, it is clearer to use the average kinetic of the ions.

  7. 7.

    The Langer correction is the transformation l(l + 1) → (l + 1∕2)2, which leads to more accurate semi-classical results.

References

  1. Petrache HI, Zemb T, Belloni L, Parsegian VA (2006) Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc Natl Acad Sci 103(21):7982. https://doi.org/10.1073/pnas.0509967103. http://www.pnas.org/content/103/21/7982.abstract

  2. Larsson M, Geppert WD, Nyman G (2012) Ion chemistry in space. Rep Prog Phys 75(6):066901

    Article  CAS  Google Scholar 

  3. Khomenko E (2016) On the effects of ion-neutral interactions in solar plasmas. Plasma Phys Controlled Fusion 59(1):014038. https://doi.org/10.1088/0741-3335/59/1/014038

    Article  Google Scholar 

  4. Brünken S, Kluge L, Stoffels A, Pérez-Ríos J, Schlemmer S (2017) Rotational state-dependent attachment of he atoms to cold molecular ions: an action spectroscopic scheme for rotational spectroscopy. J Mol Spectrosc 332:67

    Article  CAS  Google Scholar 

  5. Doerk H, Idziaszek Z, Calarco T (2010) Atom-ion quantum gate. Phys Rev A 81:012708 . https://doi.org/10.1103/PhysRevA.81.012708

    Article  CAS  Google Scholar 

  6. Secker T, Gerritsma R, Glaetzle AW, Negretti A (2016) Controlled long-range interactions between rydberg atoms and ions. Phys Rev A 94:013420. https://doi.org/10.1103/PhysRevA.94.013420

    Article  CAS  Google Scholar 

  7. Bissbort U, Cocks D, Negretti A, Idziaszek Z, Calarco T, Schmidt-Kaler F, Hofstetter W, Gerritsma R (2013) Emulating solid-state physics with a hybrid system of ultracold ions and atoms. Phys Rev Lett 111:080501. https://doi.org/10.1103/PhysRevLett.111.080501

    Article  CAS  Google Scholar 

  8. Mur-Petit J, García-Ripoll JJ, Pérez-Ríos J, Campos-Martínez J, Hernández MI, Willitsch S (2012) Temperature-independent quantum logic for molecular spectroscopy. Phys Rev A 85:022308

    Article  CAS  Google Scholar 

  9. Kollath C, Köhl M, Giamarchi T (2007) Scanning tunneling microscopy for ultracold atoms. Phys Rev A 76:063602. https://doi.org/10.1103/PhysRevA.76.063602

    Article  CAS  Google Scholar 

  10. Bloch I, Dalibard J, Nascimbène S (2012) Quantum simulations with ultracold quantum gases. Nat Phys 8(4):267

    Article  CAS  Google Scholar 

  11. Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne PS (2019) Cold hybrid ion-atom systems. Rev Mod Phys 91:035001. https://doi.org/10.1103/RevModPhys.91.035001

    Article  CAS  Google Scholar 

  12. Willitsch S (2017) Chemistry with controlled ions. Adv Chem Phys 162:307

    CAS  Google Scholar 

  13. Penning FM (1936) Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld. Physica 3(9):873. https://doi.org/10.1016/S0031-8914(36)80313-9. http://www.sciencedirect.com/science/article/pii/S0031891436803139

  14. Pierce JR (1954) Theory and design of electron beams. D. Van Nostrand, Princeton

    Google Scholar 

  15. Gräff G, Klempt E, Werth G (1969) Method for measuring the anomalous magnetic moment of free electrons. Zeitschrift für Physik A Hadrons and Nuclei 222(3):201. https://doi.org/10.1007/BF01392119

    Article  Google Scholar 

  16. Novikov YN, Vasiliev AA, Gusev YI, Nesterenko DA, Popov AV, Seliverstov DM, Seliverstov MD, Khusainov AK, Blaum K, Eliseev SA, Herfurth F, Block M, Vorobjev GK, Jokinen A, Rodriguez D, Yavor MI (2012) High-precision method of measuring short-lived nuclides by means of developed systems of ion traps for high-charge ions (mats project). Atomic Energy 112(2):139. https://doi.org/10.1007/s10512-012-9535-4

    Article  CAS  Google Scholar 

  17. Chaudhuri A, Andreoiu C, Brodeur M, Brunner T, Chowdhury U, Ettenauer S, Gallant AT, Grossheim A, Gwinner G, Klawitter R, Kwiatkowski AA, Leach KG, Lennarz A, Lunney D, Macdonald TD, Ringle R, Schultz BE, Simon VV, Simon MC, Dilling J (2014) Titan: an ion trap for accurate mass measurements of ms-half-life nuclides. Appl Phys B 114(1):99. https://doi.org/10.1007/s00340-013-5618-8

    Article  CAS  Google Scholar 

  18. Roux C, Blaum K, Block M, Droese C, Eliseev S, Goncharov M, Herfurth F, Ramirez EM, Nesterenko DA, Novikov YN, Schweikhard L (2013) Data analysis of q-value measurements for double-electron capture with shiptrap. Eur Phys J D 67(7):146. https://doi.org/10.1140/epjd/e2013-40110-x

    Article  CAS  Google Scholar 

  19. Blaum K, Novikov YN, Werth G (2010) Penning traps as a versatile tool for precise experiments in fundamental physics. Contemp Phys 51(2):149. https://doi.org/10.1080/00107510903387652

    Article  CAS  Google Scholar 

  20. Repp J, Böhm C, Crespo López-Urrutia JR, Dörr A, Eliseev S, George S, Goncharov M, Novikov YN, Roux C, Sturm S, Ulmer S, Blaum K (2012) Pentatrap: a novel cryogenic multi-penning-trap experiment for high-precision mass measurements on highly charged ions. Appl Phys B 107(4):983. https://doi.org/10.1007/s00340-011-4823-6

    Article  CAS  Google Scholar 

  21. Eliseev SA, Novikov YN, Blaum K (2012) Search for resonant enhancement of neutrinoless double-electron capture by high-precision penning-trap mass spectrometry. J Phys G Nucl Part Phys 39(12):124003. https://doi.org/10.1088/0954-3899/39/12/124003

    Article  CAS  Google Scholar 

  22. Sturm S, Werth G, Blaum K (2013) Electron g-factor determinations in penning traps. Annalen der Physik 525(8–9):620

    Article  CAS  Google Scholar 

  23. (2019). http://alpha.web.cern.ch

  24. (2019). http://gabrielse.physics.harvard.edu/gabrielse/overviews/Antihydrogen/Antihydrogen.html

  25. Paul W (1990) Electromagnetic traps for charged and neutral particles. Rev Mod Phys 62:531. https://doi.org/10.1103/RevModPhys.62.531

    Article  CAS  Google Scholar 

  26. Neuhauser W, Hohenstatt M, Toschek P, Dehmelt H (1978) Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys Rev Lett 41:233

    Article  CAS  Google Scholar 

  27. Ghosh PK (1995) Ion traps. Oxford University Press, New York

    Google Scholar 

  28. Leibfried D, Blatt R, Monroe C, Wineland D (2003) Quantum dynamics of single trapped ions. Rev Mod Phys 75:281. https://doi.org/10.1103/RevModPhys.75.281

    Article  CAS  Google Scholar 

  29. Mohammadi A, Wolf J, Krükow A, Deiß M, Hecker Denschlag J (2019) Minimizing rf-induced excess micromotion of a trapped ion with the help of ultracold atoms. Appl Phys B 125(7):122. https://doi.org/10.1007/s00340-019-7223-y

    Article  CAS  Google Scholar 

  30. Berkeland DJ, Miller JD, Bergquist JC, Itano WM, Wineland DJ (1998) Minimization of ion micromotion in a Paul trap. J Appl Phys 83(10):5025. https://doi.org/10.1063/1.367318

    Article  CAS  Google Scholar 

  31. Zemansky MW, Dittman RH (1996) Heat and thermodynamics. McGraw-Hill, New York

    Google Scholar 

  32. Thompson RC (2015) Ion coulomb crystals. Contemp Phys 56(1):63. https://doi.org/10.1080/00107514.2014.989715

    CAS  Google Scholar 

  33. Willitsch S, Bell M, Gingell A, Softley TP (2008) Chemical applications of laser- and sympathetically cooled ions in traps. Phys Chem Chem Phys 10:7200

    Article  CAS  Google Scholar 

  34. Jones MD, Ceperley DM (1996) Crystallization of the one-component plasma at finite temperature. Phys Rev Lett 76:4572. https://doi.org/10.1103/PhysRevLett.76.4572

    Article  CAS  Google Scholar 

  35. Hall FHJ, Aymar M, Bouloufa N, Dulieu O, Willitsch S (2011) Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation vs. charge exchange. Phys Rev Lett 107:243202

    Google Scholar 

  36. Hall FHJ, Willitsch S (2012) Phys Rev Lett 109:233202

    Article  CAS  Google Scholar 

  37. Hall FHJ, Eberle P, Hegi G, Raoult M, Aymar M, Dulieu O, Willitsch S (2013) Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. Mol Phys 111:2020

    Article  CAS  Google Scholar 

  38. Jefimenko OD (1989) Electicity and magnetism. Electret Scientific Company, West Virginia

    Google Scholar 

  39. Stone A (2013) The theory of intermolecular forces, 2nd edn. Oxford University Press, UK.

    Book  Google Scholar 

  40. Mitroy J, Safronova MS, Clark CW (2010) Theory and applications of atomic and ionic polarizabilities. J Phys B At Mol Opt Phys 43(20):202001. https://doi.org/10.1088/0953-4075/43/20/202001

    Article  CAS  Google Scholar 

  41. Tomza M, Koch CP, Moszynski R (2015) Cold interactions between an Yb+ ion and a Li atom: prospects for sympathetic cooling, radiative association, and Feshbach resonances. Phys Rev A 91:042706. https://doi.org/10.1103/PhysRevA.91.042706

    Article  CAS  Google Scholar 

  42. Langevin P (1905) Une formule fodnamentale de théorie cinétique. C R Acad Sci 140:35

    Google Scholar 

  43. Auzinsh M, Dashevskaya EI, Nikitin EE, Troe J (2013) Quantum capture of charged particles by rapidly rotating symmetric top molecules with small dipole moments: analytical comparison of the fly-wheel and adiabatic channel limits. Mol Phys 111(14–15):2003. https://doi.org/10.1080/00268976.2013.780101

    Article  CAS  Google Scholar 

  44. Nikitin EE, Troe J (2005) Dynamics of ion–molecule complex formation at very low energies and temperatures. Phys Chem Chem Phys 7(7):1540. https://doi.org/10.1039/B416401F

    Article  CAS  Google Scholar 

  45. Herbst E (1979) A statistical theory of three-body ion–molecule reactions. J Chem Phys 70(5):2201. https://doi.org/10.1063/1.437775

    Article  CAS  Google Scholar 

  46. Lara M, Jambrina PG, Aoiz FJ, Launay JM (2015) Cold and ultracold dynamics of the barrierless D+ + H2 reaction: quantum reactive calculations for ∼ r −4 long range interaction potentials. J Chem Phys 143(20):204305. https://doi.org/10.1063/1.4936144

    Article  CAS  Google Scholar 

  47. Landau LD, Lifshitz EM (1958) Quantum mechanics. Butterworth-Heinemann

    Google Scholar 

  48. Levine RD, Bernstein RB (1987) Molecular reaction dynamics and chemical reactivity. Oxford University Press, New York

    Google Scholar 

  49. Côté R, Dalgarno A (2000) Ultracold atom-ion collisions. Phys Rev A 62:012709

    Article  Google Scholar 

  50. McDaniel EW (1964) Collision phenomena in ionized gases. Wiley, New York

    Google Scholar 

  51. da Silva Jr H, Raoult M, Aymar M, Dulieu O (2015) Formation of molecular ions by radiative association of cold trapped atoms and ions. New J Phys 17(4):045015. https://doi.org/10.1088/1367-2630/17/4/045015

    Article  CAS  Google Scholar 

  52. Zygelman G, Dalgarno A (1990) The radiative association of He+ and H. Astrophys J 365:239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Hybrid Atom–Ion Systems. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_9

Download citation

Publish with us

Policies and ethics