Skip to main content

Ultracold Rydberg Atoms and Ultralong-Range Rydberg Molecules

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 600 Accesses

Abstract

Rydberg physics is considered an independent discipline within atomic, molecular, and optical physics. Most of the interest in Rydberg physics is due to the possible applications of Rydberg atoms in quantum information processing [1,2,3,4] and quantum simulation of many-body Hamiltonians [5,6,7,8]. As a consequence, most of the works and books based on Rydberg atoms assume some value for the decay rate of the atom; hence, they do not explore the nature of the different decay mechanisms [7, 8]. Such a perspective may be suitable for quantum optics, quantum information, and quantum simulations. However, if the nature of the decay of Rydberg atoms is understood, it will help to elucidate the best states and scenarios for a given application. Surprisingly enough, it turns out that the primary decay mechanism of Rydberg atoms in a high-density medium is through chemical reactions [9], the topic of this book. Indeed, we would like to go further and say that in most of the gas phase systems, chemical reactions are very often the main decoherence channels. Therefore, understanding and controlling chemical reactions is vital for the development of quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The scaling law is derived through second-order perturbation theory in which C 6 ∝ d 4∕ ΔE, where d is the dipole moment matrix element and ΔE is the energy difference between adjacent energy states. Then, from Table 7.2, one finds d ∝ n 2 and ΔE ∝ n −3, and therefore C 6 ∝ n 11, since it seems that the scaling law of the C6 with n is affected

  2. 2.

    This interaction is studied in detail in Sect. 9.4.1.

  3. 3.

    This is a trick that leads to fairly accurate results in comparison with the Green’s function formalism [22], and against accurate spectroscopy data.

  4. 4.

    The double pick structure observed at the position of the perturber is an artefact of using cylindrical coordinates. Thus, the electron will spend most of the time near the perturber but not on two different sides of it.

  5. 5.

    The double-peak structure is an artefact of using cylindrical coordinates and hence does not have physical relevance.

References

  1. Lukin MD, Fleischhauer M, Cote R, Duan LM, Jaksch D, Cirac JI, Zoller P (2001) Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys Rev Lett 87:037901. https://doi.org/10.1103/PhysRevLett.87.037901, https://link.aps.org/doi/10.1103/PhysRevLett.87.037901

  2. Saffman M, Walker TG, Molmer K (2010) Quantum information with Rydberg atoms. Rev Mod Phys 82:2313

    Article  CAS  Google Scholar 

  3. Müller M, Lesanovsky I, Weimer H, Büchler HP, Zoller P (2009) Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys Rev Lett 102:170502. https://doi.org/10.1103/PhysRevLett.102.170502, https://link.aps.org/doi/10.1103/PhysRevLett.102.170502

  4. Ebert M, Kwon M, Walker TG, Saffman M (2015) Coherence and Rydberg blockade of atomic ensemble qubits. Phys Rev Lett 115:093601. https://doi.org/10.1103/PhysRevLett.115.093601, https://link.aps.org/doi/10.1103/PhysRevLett.115.093601

  5. Löw R, Weimer H, Nipper J, Balewski JB, Butscher B, Büchler HP, Pfau T (2012) An experimental and theoretical guide to strongly interacting Rydberg gases. J Phys B-At Mol Opt Phys 45(11):113001

    Article  Google Scholar 

  6. Balewski JB, Krupp AT, Gaj A, Hofferberth S, Löw R, Pfau T (2014) Rydberg dressing: understanding of collective many-body effects and implications for experiments. New J Phys 16(6):063012

    Article  Google Scholar 

  7. Weimer H, Müller M, Büchler HP, Lesanovsky I (2011) Digital quantum simulation with Rydberg atoms. Quantum Inf Process 10(6):885. https://doi.org/10.1007/s11128-011-0303-5

    Article  CAS  Google Scholar 

  8. Nguyen TL, Raimond JM, Sayrin C, Cortiñas R, Cantat-Moltrecht T, Assemat F, Dotsenko I, Gleyzes S, Haroche S, Roux G, Jolicoeur T, Brune M (2018) Towards quantum simulation with circular Rydberg atoms. Phys Rev X 8:011032. https://doi.org/10.1103/PhysRevX.8.011032, https://link.aps.org/doi/10.1103/PhysRevX.8.011032

  9. Schlagmüller M, Liebisch TC, Engel F, Kleinbach KS, Böttcher F, Hermann U, Westphal KM, Gaj A, Löw R, Hofferberth S, Pfau T, Pérez-Ríos J, Greene CH (2016) Ultracold chemical reactions of a single Rydberg atom in a dense gas. Phys Rev X 6:031020. https://doi.org/10.1103/PhysRevX.6.031020, https://link.aps.org/doi/10.1103/PhysRevX.6.031020

  10. Booth D, Rittenhouse ST, Yang J, Sadeghpour HR, Shaffer JP (2015) Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments. Science 348(6230):99. https://doi.org/10.1126/science.1260722, http://science.sciencemag.org/content/348/6230/99.full.pdf, http://science.sciencemag.org/content/348/6230/99

  11. Niederprüm T, Thomas O, Eichert T, Pérez-Ríos J, Greene CH, Ott H (2016) Observation of pendular butterfly Rydberg molecules. Nat Commun 7:12820

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burke PG (1973) The R-matrix method in atomic physics. Comput Phys Commun 6:288. https://www.sciencedirect.com/science/article/pii/0010465573900386

    Article  CAS  Google Scholar 

  13. Seaton MJ (1966) Quantum defect theory II. Illustrative one-channel and two-channel problems. Proc Phys Soc 88:801

    Google Scholar 

  14. Greene CH, Fano U, Strinati G (1979) General form of the quantum-defect theory. Phys Rev A 19:1485

    Article  CAS  Google Scholar 

  15. Greene CH, Rau ARP, Fano U (1982) General form of the quantum-defect theory. II. Phys Rev A 26:2441

    Article  CAS  Google Scholar 

  16. Aymar M, Greene CH, Luc-Koenig E (1996) Multichannel Rydberg spectroscopy of complex atoms. Rev Mod Phys 68:1015

    Article  CAS  Google Scholar 

  17. Burkhardt CE, Leventhal JJ (2006) The quantum defect. Springer, New York, pp 214–229. https://doi.org/10.1007/0-387-31074-6_11

    Google Scholar 

  18. Gallagher TF (1994) Rydberg atoms. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511524530, https://www.cambridge.org/core/books/rydberg-atoms/B610BDE54694936F496F59F326C1A81B

  19. Eiles MT (2019) Trilobites, butterflies, and other exotic specimens of long-range Rydberg molecules. J Phys B-At Mol Opt Phys 52(11):113001. https://doi.org/10.1088/1361-6455/ab19ca

    Article  CAS  Google Scholar 

  20. Liebisch TC, Schlagmüller M, Engel F, Nguyen H, Balewski J, Lochead G, Böttcher F, Westphal KM, Kleinbach KS, Schmid T, Gaj A, Löw R, Hofferberth S, Pfau T, Pérez-Ríos J, Greene CH (2016) Controlling Rydberg atom excitations in dense background gases. J Phys B-At Mol Opt Phys 49(18):182001. https://doi.org/10.1088/0953-4075/49/18/182001

    Article  Google Scholar 

  21. Greene CH, Dickinson AS, Sadeghpour HR (2000) Creation of polar and nonpolar ultra-long-range Rydberg molecules. Phys Rev Lett 85:2458. http://link.aps.org/doi/10.1103/PhysRevLett.85.2458

    Article  CAS  PubMed  Google Scholar 

  22. Hamilton EL, Greene CH, Sadeghpour HR (2002) Shape-resonance-induced long-range molecular Rydberg states. J Phys B-At Mol Opt Phys 35(10):L199. http://stacks.iop.org/0953-4075/35/i=10/a=102

    Article  CAS  Google Scholar 

  23. Khuskivadze AA, Chibisov MI, Fabrikant II (2002) Adiabatic energy levels and electric dipole moments of Rydberg states of Rb2 and Cs2 dimers. Phys Rev A 66:042709

    Article  Google Scholar 

  24. Fermi E (1934) Sopra lo spostamento per pressione delle righe elevate delle serie spettrali. Nouvo Cimento 11:157

    Article  CAS  Google Scholar 

  25. Bendkowsky V, Butscher B, Nipper J, Shaffer JP, Low R, Pfau T (2009) Observation of ultralong-range Rydberg molecules. Nature 458(7241):1005. https://doi.org/10.1038/nature07945

    Article  CAS  PubMed  Google Scholar 

  26. Omont A (1977) J Phys 38:1343

    Article  CAS  Google Scholar 

  27. Fabrikant II (1986) Interaction of Rydberg atoms and thermal electrons with K, Rb and Cs atoms. J Phys B-At Mol Opt Phys 19(10):1527. https://doi.org/10.1088/0022-3700/19/10/021

    Article  CAS  Google Scholar 

  28. Rost JM, Griffin JC, Friedrich B, Herschbach DR (1992) Pendular states and spectra of oriented linear molecules. Phys Rev Lett 68:1299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Ultracold Rydberg Atoms and Ultralong-Range Rydberg Molecules. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_7

Download citation

Publish with us

Policies and ethics