Skip to main content

Ultracold Molecular Collisions

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 558 Accesses

Abstract

It is well-known that molecules show electronic, vibrational, and rotational degrees of freedom. In principle, by taking into account the role of these degrees of freedom, it is possible to accurately describe chemical reactions at room temperature. However, at ultracold temperatures is necessary to go one step further and include some subtle effects on the molecular Hamiltonian. In particular, it is necessary to include the fine and hyperfine splitting of the molecular states and the interaction among them [1, 2]. The interactions emerge as a consequence of diverse couplings between the nuclear spin, molecular rotation, and electron spin [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please, note that the \(\hat {\mathbf {r}}\) stands for the unit vector of the vector position r.

  2. 2.

    In other words, the total angular momentum of the system and its projection on a given axis is conserved.

  3. 3.

    The term physical here denotes the fact that the scattering wave function can be always be decomposed as an incoming plane wave plus a divergent spherical wave times the amplitude of scattering.

  4. 4.

    Polarized molecules show a preferable angular momentum projection.

  5. 5.

    This way of proceeding is not unique, Tscherbul et al. [20] used a different representation for the intermolecular potential as a spin-dependent plus a spin-independent term (Heisenberg Hamiltonian) [27,28,29].

  6. 6.

    This is equivalent to C6; however, the superscript is omitted when dealigning for spherical symmetric potentials.

  7. 7.

    This condition is general for scattering problems. One needs to choose the initial propagation point deeply in the classical forbidden region to ensure that the wave function is null at that point.

References

  1. Brown J, Carrington A (2003) Rotational spectroscopy of diatomic molecules. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Bernath PF (2005) Spectra of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  3. Takayanagi K (1965) The production of rotational and vibrational transitions in encounters between molecules. Academic, pp 149–194. https://doi.org/10.1016/S0065-2199(08)60282-1, http://www.sciencedirect.com/science/article/pii/S0065219908602821

  4. Green S (1975) J Chem Phys 62(6):2271. https://doi.org/10.1063/1.430752

    Article  CAS  Google Scholar 

  5. Zarur G, Rabitz H (1974) J Chem Phys 60:2057

    Article  CAS  Google Scholar 

  6. Englot GF, Rabitz H (1974) Dimensionality control of coupled scattering equations using partitioning techniques: the case of two molecules. Phys Rev A 10:2187. https://doi.org/10.1103/PhysRevA.10.2187

    Article  Google Scholar 

  7. Barreto PRP, Cruz ACPS, Barreto RLP, Palazzetti F, Albernaz AF, Lombardi A, Maciel GS, Aquilanti V (2017) The spherical-harmonics representation for the interaction between diatomic molecules: the general case and applications to COCO and COHF. J Mol Spectrosc 337:163. https://doi.org/10.1016/j.jms.2017.05.009, http://www.sciencedirect.com/science/article/pii/S0022285217300905

  8. Varshalovich D, Moskalev A, Khersonskii V (1988) Quantum theory of angular momentum: irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols. World Scientific. https://books.google.de/books?id=hQx_QgAACAAJ

    Book  Google Scholar 

  9. Edmonds AR (1974) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    Google Scholar 

  10. Zare RN (1988) Angular momentum. Wiley, New York

    Google Scholar 

  11. Zhang JZH (1999) Theory and applications of quantum molecular dynamics. World Scientific, Singapore

    Google Scholar 

  12. Landau LD, Lifshitz EM (1958) Quantum mechanics. Butterworth-Heinemann

    Google Scholar 

  13. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  14. Miller WH (1976) Dynamics of molecular collisions. Plenum Press, New York

    Book  Google Scholar 

  15. Pérez-Ríos J, Bartolomei M, Campos-Martínez J, Hernández MI, Hernández-Lamoneda R (2009) J Phys Chem A 113:14952

    Article  PubMed  Google Scholar 

  16. Gioumousis G, Curtiss CF (1958) J Chem Phys 29:996

    Article  CAS  Google Scholar 

  17. Krems RV, Dalgarno A (2004) “Quantum-mechanical theory of atom-molecule and molecular collisions in a magnetic field: spin depolarization. J Chem Phys 120(5):2296. https://doi.org/10.1063/1.1636691

    Article  CAS  PubMed  Google Scholar 

  18. Tscherbul TV, Suleimanov YV, Aquilanti V, Krems RV (2009) New J Phys 11(5):055021

    Article  Google Scholar 

  19. Volpi A, Bohn JL (2002) Phys Rev A 65:052712

    Article  Google Scholar 

  20. Tscherbul TV, Suleimanov YV, Aquilanti V, Krems R (2009) New J Phys 11:055021

    Article  Google Scholar 

  21. Freidrich B, deCarvalho R, Kim J, Patterson D, Weinstein JD, Doyle JM (1998) J Chem Soc Faraday Trans 94:1783

    Google Scholar 

  22. Herzberg G (1950) Spectra of diatomic molecules. Van Nostrand, New York

    Google Scholar 

  23. Mizushima M (1975) The theory of rotating diatomic molecules. Wiley, New York

    Google Scholar 

  24. Gazzoli G, Espositi CD (1985) Chem Phys Lett 113:501

    Article  Google Scholar 

  25. Avdeenkov AV, Bohn JL (2001) Phys Rev A 64:052703. https://doi.org/10.1103/PhysRevA.64.052703

    Article  Google Scholar 

  26. Teisinga E, Verhaar BJ, Stoof HTC (1993) Phys Rev A 47:4114

    Article  Google Scholar 

  27. Aquilanti V, Ascenzi D, Bartolomei M, Cappelletti D, Cavalli S, de Castro Vìtores M, Pirani F (1999) J Am Chem Soc 121(46):10794

    Article  CAS  Google Scholar 

  28. Wormer PES, van der Avoird A (1984) J Chem Phys 81(4):1929. https://doi.org/10.1063/1.447867

    Article  CAS  Google Scholar 

  29. Bussery B, Wormer PES (1993) J Chem Phys 99:1230

    Article  CAS  Google Scholar 

  30. Pérez-Ríos J, Campos-Martínez J, Hernández MI (2011) J Chem Phys 134(12):124310. https://doi.org/10.1063/1.3573968

    Article  Google Scholar 

  31. Bartolomei M, Carmona-Novillo E, Hernández MI, Campos-Martínez J, Hernández-Lamoneda R (2010) J Chem Phys 133(12):124311

    Article  PubMed  Google Scholar 

  32. Hutson JM (2007) New J Phys 9:152

    Article  Google Scholar 

  33. Idziaszek Z, Julienne PS (2010) Phys Rev Lett 104(11):113202. https://doi.org/10.1103/PhysRevLett.104.113202

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Ultracold Molecular Collisions. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_5

Download citation

Publish with us

Policies and ethics