Skip to main content

Cooling and Trapping of Molecules

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 618 Accesses

Abstract

The advancement in ultracold physics is attached to the development of cooling, manipulation, and trapping techniques for atoms and molecules. Therefore, it is necessary to understand some of the techniques that make ultracold physics. Efficient cooling and trapping techniques for atoms have been available since the mid-1980s and there is an extensive range of literature on that topic; it has even been beautifully introduced in several books [1, 2]. However, cooling and trapping techniques for molecules are generally discussed in specialized journals, and certainly, they are not discussed in books about ultracold gases. For this reason, in this chapter, we introduce most of the cooling and trapping techniques for molecules, since molecules are the workhorse of chemistry and the purpose of this book. Moreover, throughout this chapter, the reader may gain some insights into the complications that molecules offer with respect to atoms owing to the presence of internal degrees of freedom, that ultimately can be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on the velocity of the molecules in the beam, this reduction would be equivalent to 8%.

  2. 2.

    As a theoretician; I never implemented this technique by myself. However, my experimentalist colleagues continuously implement this setup without too many technical issues. That is the reason why I used the word straightforward. Having said this, I do not mean that its implementation is trivial.

  3. 3.

    A two-level molecule is analogous to a two-level atom, although the two states in this cases are represented by rovibrational states of the molecule.

  4. 4.

    The laser frequency is red-detuned from the atomic transition.

  5. 5.

    It is worth noting that ρ ee stands for the population of the excited state, which is the second diagonal term of the density matrix [43, 44]. This is the typical notation for the optical Bloch equations.

  6. 6.

    It is worth noting that the transition dipole moment is expressed with respect to the reference frame fixed to the molecule. In contrast, the electric field is defined in the lab frame. Therefore, a proper transformation from the molecular frame to the lab frame has to be accomplished for the proper evaluation of the matrix elements [69,70,71].

  7. 7.

    It also depends on the quantum state of the atomic or molecular system under consideration.

  8. 8.

    In the case of (4.33) it may be the case that the atoms have lower kinetic energy than before and hence they remain trapped. However, this possibility is unlikely [89].

  9. 9.

    Here we use bond length in the physicists’ sense, i.e., we are not referring to a covalent, ionic or van der Waals binding mechanism.

References

  1. Metcalf HJ, van der Straten P (1999) Laser cooling and trapping. Springer, Utrecht

    Book  Google Scholar 

  2. Letokhov VS (2007) Laser control of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  3. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecualr theory of transport in gases. Wiley, New York

    Google Scholar 

  4. Montero S, Pérez-Ríos J (2014) Rotational relaxation in molecular hydrogen and deuterium: theory versus acoustic experiments. J Chem Phys 141:2014

    Google Scholar 

  5. Gerlach W, Stern O (1922) Der experimentelle nachweis der richtungsquantelung im magnetfeld. Zeitschrift für Physik 9(1):349

    Article  CAS  Google Scholar 

  6. Bethlem HL, Berden G, Meijer G (1999) Decelerating neutral dipolar molecules. Phys Rev Lett 83(8):1558

    Article  CAS  Google Scholar 

  7. van de Meerakker SYT, Bethlem HL, Meijer G (2008) Taming molecular beams. Nat Phys 4(8):595. https://doi.org/10.1038/nphys1031

    Article  CAS  Google Scholar 

  8. van de Meerakker SYT, Bethlem HL, Vanhaecke N, Meijer G (2012) Manipulation and control of molecular beams. Chem Rev 112(9):4828. https://doi.org/10.1021/cr200349r

    Article  CAS  Google Scholar 

  9. Hogan SD, Seiler C, Merkt F (2009) Rydberg-state-enabled deceleration and trapping of cold molecules. Phys Rev Lett 103(12):123001

    Article  CAS  Google Scholar 

  10. Vliegen E, Hogan SD, Schmutz H, Merkt F (2007) Stark deceleration and trapping of hydrogen rydberg atoms. Phys Rev A 76:023405. https://doi.org/10.1103/PhysRevA.76.023405

    Article  CAS  Google Scholar 

  11. Sawyer BC, Stuhl BK, Lev BL, Ye J, Hudson ER (2008) Mitigation of loss within a molecular stark decelerator. Eur Phys J D 48(2):197. https://doi.org/10.1140/epjd/e2008-00097-y

    Article  CAS  Google Scholar 

  12. Hudson ER, Bochinski JR, Lewandowski HJ, Sawyer BC, Ye J (2004) Efficient stark deceleration of cold polar molecules. Eur Phys J D 31(2):351. https://doi.org/10.1140/epjd/e2004-00138-7

    Article  CAS  Google Scholar 

  13. Wall TE, Tokunaga SK, Hinds EA, Tarbutt MR (2010) Nonadiabatic transitions in a stark decelerator. Phys Rev A 81:033414. https://doi.org/10.1103/PhysRevA.81.033414

    Article  CAS  Google Scholar 

  14. Hogan SD (2016) Rydberg-stark deceleration of atoms and molecules. EPJ Tech Instrum 3(1):2. https://doi.org/10.1140/epjti/s40485-015-0028-4

    Article  Google Scholar 

  15. Truppe S, Marx S, Kray S, Doppelbauer M, Hofsäss S, Schewe HC, Walter N, Pérez-Ríos J, Sartakov BG, Meijer G (2019) Spectroscopic characterization of aluminum monofluoride with relevance to laser cooling and trapping. 1908.11774

    Google Scholar 

  16. Bethlem HL, FMH Crompvoets, Jongma RT, SYT van de Meerakker SYT, Meijer G (2002) Deceleration and trapping of ammonia using time-varying electric fields. Phys Rev A 65:053416. https://doi.org/10.1103/PhysRevA.65.053416

  17. van de Meerakker SYT, Vanhaecke N, Bethlem HL, Meijer G (2005) Higher-order resonances in a stark decelerator. Phys Rev A 71:053409. https://doi.org/10.1103/PhysRevA.71.053409

    Article  CAS  Google Scholar 

  18. Gubbels K, Meijer G, Friedrich B (2006) Analytic wave model of stark deceleration dynamics. Phys Rev A 73:063406. https://doi.org/10.1103/PhysRevA.73.063406

    Article  CAS  Google Scholar 

  19. Fulton R, Bishop AI, Barker PF (2004) Optical stark decelerator for molecules. Phys Rev Lett 63:243004

    Article  CAS  Google Scholar 

  20. Fulton R, Bishop AI, Barker PF (2005) An optical decelerator for cold molecules. In: 2005 quantum electronics and laser science conference, vol. 1, pp. 490–492. https://doi.org/10.1109/QELS.2005.1548826

    Article  Google Scholar 

  21. Fulton R, Bishop AI, Shneider MN, Barker PF (2006) Controlling the motion of cold molecules with deep periodic optical potentials. Nat Phys 2:465

    Article  CAS  Google Scholar 

  22. Yang Y, Shunyong H, Deng L (2018) Optical stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam. Chin Phys B 27:053701

    Article  CAS  Google Scholar 

  23. Bishop AI, Wang L, Barker PF (2010) Creating cold stationary molecular gases by optical stark deceleration. New J Phys 12(7):073028. https://doi.org/10.1088/1367-2630/12/7/073028

    Article  CAS  Google Scholar 

  24. Grimm R, Weidemüller M, Ovchinnikov YB, Bederson B, Walther H (2000) Adv Atom, Mol Opt Phys, vol. 42 Academic Press, pp. 95–170

    Google Scholar 

  25. Seideman T (1999) New means of spatially manipulating molecules with light. J Chem Phys 111(10):4397. https://doi.org/10.1063/1.479204

    Article  CAS  Google Scholar 

  26. Friedrich B, Doyle JM (2009) Why are cold molecules so hot? ChemPhysChem 10(4):604

    Article  CAS  Google Scholar 

  27. Dulitz K, Vanhaecke N, Softley TP (2015) Model for the overall phase-space acceptance in a zeeman decelerator. Phys Rev A 91:013409. https://doi.org/10.1103/PhysRevA.91.013409

    Article  CAS  Google Scholar 

  28. Wiederkehr AW, Hogan SD, Merkt F (2010) Phase stability in a multistage zeeman decelerator. Phys Rev A 82:043428. https://doi.org/10.1103/PhysRevA.82.043428

    Article  CAS  Google Scholar 

  29. Narevicius E, Parthey CG, Libson A, Narevicius J, Chavez I, Even U, Raizen MG (2007) An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam. New J Phys 9(10):358. https://doi.org/10.1088/1367-2630/9/10/358

    Article  CAS  Google Scholar 

  30. Hogan SD, Wiederkehr AW, Andrist M, Schmutz H, Merkt F (2008) Slow beams of atomic hydrogen by multistage zeeman deceleration. J Phys B Atomic Mol Opt Phys 41(8):081005

    Article  CAS  Google Scholar 

  31. Hogan SD, Wiederkehr AW, Schmutz H, Merkt F (2008) Magnetic trapping of hydrogen after multistage zeeman deceleration. Phys Rev Lett 101:143001. https://doi.org/10.1103/PhysRevLett.101.143001

    Article  CAS  Google Scholar 

  32. Hogan SD, Sprecher D, Andrist M, Vanhaecke N, Merkt F (2007) Zeeman deceleration of H and D. Phys Rev A 76:023412. https://doi.org/10.1103/PhysRevA.76.023412

    Article  CAS  Google Scholar 

  33. Mizushima M (1975) The theory of rotating diatomic molecules. Wiley, New York

    Google Scholar 

  34. Cremers T, Janssen N, Sweers E van de Meerakker SYT (2019) Design and construction of a multistage zeeman decelerator for crossed molecular beams scattering experiments. Rev Sci Instrum 90(1):013104

    Google Scholar 

  35. Lebedev P (1901) Untersuchungen über die druckkräte des lichtes. Ann Phys (Leipzig) 6:433

    Article  Google Scholar 

  36. Nichols EF, Hull GF (1901) A preliminary communication on the pressure of heat and light radiation. Phys Rev 13:307

    Google Scholar 

  37. Nichols EF, Hull GF (1903) The pressure due to radiation. Phys Rev 17:26

    Google Scholar 

  38. Phillips WD (1998) Nobel lecture: laser cooling and trapping of neutral atoms. Rev Mod Phys 70:721. https://doi.org/10.1103/RevModPhys.70.721

    Article  CAS  Google Scholar 

  39. Chu S (1998) Nobel lecture: the manipulation of neutral particles. Rev Mod Phys 70:685. https://doi.org/10.1103/RevModPhys.70.685

    Article  CAS  Google Scholar 

  40. Cohen-Tannoudji CN (1998) Nobel lecture: manipulating atoms with photons. Rev Mod Phys 70:707. https://doi.org/10.1103/RevModPhys.70.707

    Article  CAS  Google Scholar 

  41. Tarbutt MR (2018) Laser cooling of molecules. Contemp Phys 59(4):356. https://doi.org/10.1080/00107514.2018.1576338

    Article  CAS  Google Scholar 

  42. Shuman ES, Barry JF, DeMille D (2010) Laser cooling of a diatomic molecule. Nature 467(7317):820. https://doi.org/10.1038/nature09443

    Article  CAS  Google Scholar 

  43. Loudon R (1973) The quantum theory of light. Clarendon Press, Oxford

    Google Scholar 

  44. Scully MO, Zubairy MS (2002) Quantum optics. Cambridge University Press, Cambridge

    Google Scholar 

  45. Ungar PJ, Weiss DS, Riis E, Chu S (1989) Optical molasses and multilevel atoms: theory. J Opt Soc Am B 6(11):2058. http://josab.osa.org/abstract.cfm?URI=josab-6-11-2058

    Article  CAS  Google Scholar 

  46. Lett PD, Phillips WD, Rolston SL, Tanner CE, Watts RN, Westbrook CI (1989) Optical molasses. J. Opt. Soc. Am. B 6(11):2084

    Google Scholar 

  47. Barry JF, McCarron DJ, Norrgard EB, Steinecker MH, DeMille D (2014) Magneto-optical trapping of a diatomic molecule. Nature 512:286 EP. https://doi.org/10.1038/nature13634

  48. Norrgard EB, McCarron DJ, Steinecker MH, Tarbutt MR and DeMille D (2016) Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys Rev Lett 116:063004. https://doi.org/10.1103/PhysRevLett.116.063004

    Article  CAS  Google Scholar 

  49. Hummon MT, Yeo M, Stuhl BK, Collopy AL, Xia Y, Ye J (2013) 2d magneto-optical trapping of diatomic molecules. Phys Rev Lett 110:143001. https://doi.org/10.1103/PhysRevLett.110.143001

    Article  CAS  Google Scholar 

  50. Zhelyazkova V, Cournol A, Wall TE, Matsushima A, Hudson JJ, Hinds EA, Tarbutt MR, Sauer BE (2014) Laser cooling and slowing of caf molecules. Phys Rev A 89:053416. https://doi.org/10.1103/PhysRevA.89.053416

    Article  CAS  Google Scholar 

  51. Anderegg L, Augenbraun BL, Chae E, Hemmerling B, Hutzler NR, Ravi A, Collopy A, Ye J, Ketterle W, Doyle JM (2017) Radio frequency magneto-optical trapping of caf with high density. Phys Rev Lett 119:103201. https://doi.org/10.1103/PhysRevLett.119.103201

    Article  Google Scholar 

  52. Williams HJ, Truppe S, Hambach M, Caldwell L, Fitch NJ, Hinds EA, Sauer BE, Tarbutt MR (2017) Characteristics of a magneto-optical trap of molecules. New J Phys 19(11):113035. https://doi.org/10.1088/1367-2630/aa8e52

    Article  CAS  Google Scholar 

  53. Truppe S, Williams HJ, Hambach M, Caldwell L, Fitch NJ, Hinds EA, Sauer BE, Tarbutt MR (2017) Molecules cooled below the doppler limit. Nat Phys 13:1173. https://doi.org/10.1038/nphys4241

    Article  CAS  Google Scholar 

  54. Truppe S, Williams HJ, Fitch NJ, Hambach M, Wall TE, Hinds EA, Sauer BE, Tarbutt MR (2017) An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J Phys 19(2):022001. https://doi.org/10.1088/1367-2630/aa5ca2

    Article  CAS  Google Scholar 

  55. Doyle JM, Friedrich B, Kim J, Patterson D (1995) Buffer-gas loading of atoms and molecules into a magnetic trap. Phys Rev A 52(4):R2515

    Article  CAS  Google Scholar 

  56. Brünken S, Kluge L, Stoffels A, Pérez-Ríos J, Schlemmer S (2017) Rotational state-dependent attachment of he atoms to cold molecular ions: an action spectroscopic scheme for rotational spectroscopy. J Mol Spectrosc 332:67

    Article  CAS  Google Scholar 

  57. Krems RV, Stwalley WC, Friedrich B (eds) (2009) Cold molecules: theory, experiment, applications. CRC Press, Boca Raton

    Google Scholar 

  58. Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63(2):109. https://doi.org/10.1007/BF01567637

    Article  Google Scholar 

  59. Olander DR (2009) Laser-pulse-vaporization of refractory materials. Pure Appl Chem 62.1:123

    Article  Google Scholar 

  60. Parker JK, Garland NL, Nelson HH (2002) Kinetics of the reaction Al + SF6 in the temperature range 499–813 K. J Phys Chem A 106:307

    Article  CAS  Google Scholar 

  61. Patterson D, Rasmussen J, Doyle JM (2009) Intense atomic and molecular beams via neon buffer-gas cooling. New J Phys 11(5):055018. https://doi.org/10.1088/1367-2630/11/5/055018

    Article  CAS  Google Scholar 

  62. deCarvalho R, Doyle JM, Friedrich B, Guillet T, Kim J, Patterson D, Weinstein JD (1999) Buffer-gas loaded magnetic traps for atoms and molecules: a primer. Eur Phys J D Atomic Mol Opt Plasma Phys 7(3):289

    CAS  Google Scholar 

  63. Hutzler NR, Lu HI, Doyle JM (2012) The buffer gas beam: an intense, cold and slow source for atoms and molecules. Chem Rev 112:4803

    Article  CAS  Google Scholar 

  64. Weinstein JD, deCarvalho R, Guillet T, Friedrich B, Doyle JM (1998) Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395(6698):148

    Article  CAS  Google Scholar 

  65. Campbell WC, Groenenboom GC, Lu H-I, Tsikata E, Doyle JM (2008) Time-domain measurement of spontaneous vibrational decay of magnetically trapped NH. Phys Rev Lett 100:083003. https://doi.org/10.1103/PhysRevLett.100.083003

    Article  CAS  Google Scholar 

  66. Barry JF, Shuman ES, DeMille D (2011) A bright, slow cryogenic molecular beam source for free radicals. Phys Chem Chem Phys 13(42):18936. https://doi.org/10.1039/C1CP20335E

    Article  CAS  Google Scholar 

  67. Hasted JB (1964) Physics of atomic collisions. Butterworths advanced physics series’. Monographs on ionization and electrical discharges in gases. Butterworths, Washington, 1964.

    Google Scholar 

  68. Carr LD, DeMille D, Krems RV, Ye J (2009) Cold and ultracold molecules: science, technology and applications. New J Phys 11:055049

    Article  CAS  Google Scholar 

  69. Vexiau R, Borsalino D, Lepers M, Orbán A, Aymar M, Dulieu O, Bouloufa-Maafa N (2017) Dynamic dipole polarizabilities of heteronuclear alkali dimers: optical response, trapping and control of ultracold molecules. Int Rev Phys Chem 36(4):709

    Article  CAS  Google Scholar 

  70. Vexiau R, Bouloufa N, Aymar M, Danzl JG, Mark MJ, Nägerl HC, Dulieu O (2011) Optimal trapping wavelengths of cs2 molecules in an optical lattice. Eur Phys J D 65(1):243. https://doi.org/10.1140/epjd/e2011-20085-4

    Article  CAS  Google Scholar 

  71. Deiß M, Drews B, Denschlag JH, Bouloufa-Maafa N, Vexiau R, Dulieu O (2015) Polarizability of ultracold Rb2 molecules in the rovibrational ground state of a\(^3\sigma _u^+\). New J Phys 17(6):065019. https://doi.org/10.1088/1367-2630/17/6/065019

  72. Wing WH (1984) Prog Quantum Electron 8:181

    Article  Google Scholar 

  73. Earnshaw S (1842) On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans Camb Philos Soc 7:97

    Google Scholar 

  74. Pethick CJ, Smith H (2002) Bose-Einstein condensation in dilute gases. Cambridge Unviersity Press, Cambridge

    Google Scholar 

  75. Panofsky WKH, Phillips M (1983) Classical electricity and magnetism. Dover, New York

    Google Scholar 

  76. Jefimenko OD (1989) Electicity and magnetism. Electret Scientific Company, West Virginia

    Google Scholar 

  77. Pérez-Ríos J, Sanz AS (2013) How does a magnetic trap work? Am J Phys 81(11):836. https://doi.org/10.1119/1.4819167

    Article  CAS  Google Scholar 

  78. Hess HF, Bell DA, Kochanski GP, Kleppner D, Greytak TJ (1984) Phys Rev Lett 52:1520

    Article  CAS  Google Scholar 

  79. Ketterle W, van Druten NJ (1996) Adv At Mol Opt Phys 37:181

    Article  CAS  Google Scholar 

  80. Doyle JM, Freidrich B, Kim J, Patterson D (1995) Phys Rev A 52:2515

    Article  Google Scholar 

  81. Bergmann K, Nägerl H-C, Panda C, Gabrielse G, Miloglyadov E, Quack M, Seyfang G, Wichmann G, Ospelkaus S, Kuhn A, Longhi S, Szameit A, Pirro P, Hillebrands B, Zhu X-F, Zhu J, Drewsen M, Hensinger WK, Weidt S, Halfmann T, Wang H-L, Paraoanu GS, Vitanov NV, Mompart J, Busch T, Barnum TJ, Grimes DD, Field RW, Raizen MG, Narevicius E, Auzinsh M, Budker D, Pálffy A, Keitel CH (2019) Roadmap on stirap applications. J Phys B Atomic Mol Opt Phys 52(20):202001. https://doi.org/10.1088/1361-6455/ab3995

    Article  CAS  Google Scholar 

  82. Will SA, Park JW, Yan ZZ, Loh H, Zwierlein MW (2016) Coherent microwave control of ultracold 23Na40K molecules. Phys Rev Lett 116:225306. https://doi.org/10.1103/PhysRevLett.116.225306

    Article  CAS  Google Scholar 

  83. Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O, Wang D (2016) Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys Rev Lett 116:205303. https://doi.org/10.1103/PhysRevLett.116.205303

    Article  CAS  Google Scholar 

  84. Takekoshi T, Reichsöllner L, Schindewolf A, Hutson JM, Le Sueur CR, Dulieu O, Ferlaino F, Grimm R, Nägerl H-C (2014) Ultracold dense samples of dipolar rbcs molecules in the rovibrational and hyperfine ground state. Phys Rev Lett 113:205301. https://doi.org/10.1103/PhysRevLett.113.205301

    Article  CAS  Google Scholar 

  85. Ni KK, Ospelkaus S, de Miranda MHG, Pe’er A, Neyenhuis B, Zirbel JJ, Kotochigova S, Julienne PS, Jin DS, Ye J (2008) A high phase-space-density gas of polar molecules. Science 322(5899):231. https://doi.org/10.1126/science.1163861

    Article  CAS  Google Scholar 

  86. Ospelkaus S, Ni K-K, Quéméner G, Neyenhuis B, Wang D, de Miranda MHG, Bohn JL, Ye J, Jin DS (2010) Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys Rev Lett 104:030402. https://doi.org/10.1103/PhysRevLett.104.030402

    Article  CAS  Google Scholar 

  87. Yang H, Zhang D-C, Liu L, Liu Y-X, Nan J, Zhao B, Pan J-W (2019) Observation of magnetically tunable feshbach resonances in ultracold 23na40k + 40k collisions. Science 363(6424):261. https://doi.org/10.1126/science.aau5322. http://science.sciencemag.org/content/363/6424/261.abstract

  88. Collopy AL, Ding S, Wu Y, Finneran IA, Anderegg L, Augenbraun BL, Doyle JM, Ye J (2018) 3d magneto-optical trap of yttrium monoxide. Phys Rev Lett 121:213201. https://doi.org/10.1103/PhysRevLett.121.213201

    Article  CAS  Google Scholar 

  89. Jones KM, Tiesinga E, Lett PD, Julienne PS (2006) Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev Mod Phys 78:483. https://doi.org/10.1103/RevModPhys.78.483

    Article  CAS  Google Scholar 

  90. Viteau M, Chotia A, Allegrini M, Bouloufa N, Dulieu O, Comparat D, Pillet P (2008) Optical pumping and vibrational cooling of molecules. Science 321(5886):232

    Article  CAS  Google Scholar 

  91. Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R, Bouloufa N, Dulieu O, Ritsch H, Nägerl H-C (2008) Quantum gas of deeply bound ground state molecules. Science 321(5892):1062. https://doi.org/10.1126/science.1159909. https://science.sciencemag.org/content/321/5892/1062.full.pdf, https://science.sciencemag.org/content/321/5892/1062

  92. Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R, Adegunde J, Hutson JM, Nägerl HC (2010) An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat Phys 6:265

    Article  CAS  Google Scholar 

  93. Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M (2008) Formation of ultracold polar molecules in the rovibrational ground state. Phys Rev Lett 101(13):133004.

    Article  CAS  Google Scholar 

  94. Yan M, DeSalvo BJ, Huang Y, Naidon P, Killian TC (2013) Rabi oscillations between atomic and molecular condensates driven with coherent one-color photoassociation. Phys Rev Lett 111:150402. https://doi.org/10.1103/PhysRevLett.111.150402

    Article  CAS  Google Scholar 

  95. Hamley CD, Bookjans EM, Behin-Aein G, Ahmadi P, Chapman MS (2009) Photoassociation spectroscopy of a spin-1 bose-einstein condensate. Phys Rev A 79:023401. https://doi.org/10.1103/PhysRevA.79.023401

    Article  CAS  Google Scholar 

  96. Kobayashi J, Izumi Y, Enomoto K, Kumakura M, Takahashi Y (2009) Spinor molecule in atomic bose–einstein condensate. Appl Phys B 95(1):37 https://doi.org/10.1007/s00340-008-3307-9

    Article  CAS  Google Scholar 

  97. Blasing DB, Pérez-Ríos J, Yan Y, Dutta S, Li C-H, Zhou Q, Chen YP (2018) Observation of quantum interference and coherent control in a photochemical reaction. Phys Rev Lett 121:073202. https://doi.org/10.1103/PhysRevLett.121.073202

    Article  CAS  Google Scholar 

  98. Landau LD, Lifshitz EM (1958) Quantum mechanics. Butterworth-Heinemann

    Google Scholar 

  99. Köhler T, Góral K, Julienne PS (2006) Production of cold molecules via magnetically tunable feshbach resonances. Rev Mod Phys 78:1311. Oxford, UK. https://doi.org/10.1103/RevModPhys.78.1311

  100. Timmermans E, Tommasini P, Hussein M, Kerman A (1999) Feshbach resonances in atomic bose–einstein condensates. Phys Rep 315(1):199. https://doi.org/10.1016/S0370-1573(99)00025-3. http://www.sciencedirect.com/science/article/pii/S0370157399000253

  101. Cubizolles J, Bourdel T, Kokkelmans SJ, Shlyapnikov GV, Salomon C (2003) Production of long-lived ultracold li2 molecules from a fermi gas. Phys Rev Lett 91:240401. https://doi.org/10.1103/PhysRevLett.91.240401

    Article  CAS  Google Scholar 

  102. Jochim S, Bartenstein M, Altmeyer A, Hendl G, Chin C, Denschlag JH, Grimm R (2003) Pure gas of optically trapped molecules created from fermionic atoms. Phys Rev Lett 91:240402. https://doi.org/10.1103/PhysRevLett.91.240402

    Article  CAS  Google Scholar 

  103. Strecker KE, Partridge GB, Hulet RG (2003) Conversion of an atomic fermi gas to a long-lived molecular bose gas. Phys Rev Lett 91:080406. https://doi.org/10.1103/PhysRevLett.91.080406

    Article  CAS  Google Scholar 

  104. Dürr S, Volz T, Marte A, Rempe G (2004) Observation of molecules produced from a bose-einstein condensate. Phys Rev Lett 92:020406

    Article  CAS  Google Scholar 

  105. Herbig J, Kraemer T, Mark M, Weber T, Chin C, Nägerl H-C, Grimm R (2003) Preparation of a pure molecular quantum gas. Science 301(5639):1510. https://doi.org/10.1126/science.1088876. http://science.sciencemag.org/content/301/5639/1510.abstract

  106. Wang F, He X, Li X, Zhu B, Chen J, Wang D (2015) Formation of ultracold narb feshbach molecules. New J Phys 17(3):035003. https://doi.org/10.1088/1367-2630/17/3/035003

    Article  CAS  Google Scholar 

  107. Heo M-S, Wang TT, Christensen CA, Rvachov TM, Cotta DA, Choi J-H, Lee Y-R, Ketterle W (2012) Formation of ultracold fermionic nali feshbach molecules. Phys Rev A 86:021602. https://doi.org/10.1103/PhysRevA.86.021602

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Cooling and Trapping of Molecules. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_4

Download citation

Publish with us

Policies and ethics