Skip to main content
  • 569 Accesses

Abstract

The observation of Bose–Einstein condensation (BEC) in atomic gases [1–3] has changed the paradigm of chemical physics (or atomic, molecular, and optical physics, in brief, AMO) with the birth of a new field: ultracold physics (see Fig. 3.1). Therefore, we believe that we should provide a basic, but necessary, introduction to the physics of ultracold gases to pave the way for ultracold chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the same effective potential that Fermi derived for a Rydberg electron colliding with a neutral atom (but taking into account that for the BEC problem the electron mass has to be substituted by the reduced mass m∕2), as we presented in Sect. 2.3, and it is explicitly explained in [8].

References

  1. Davis KB, Mewes MO, Andrews MR, van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Bose-einstein condensation in a gas of sodium atoms. Phys Rev Lett 75:3969. https://doi.org/10.1103/PhysRevLett.75.3969

    Article  CAS  PubMed  Google Scholar 

  2. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of bose-einstein condensation in a dilute atomic vapor. Science 269:198

    Article  CAS  PubMed  Google Scholar 

  3. Bradley CC, Sackett CA, Tollett JJ, Hulet RG (1995) Evidence of bose-einstein condensation in an atomic gas with attractive interactions. Phys Rev Lett 75:1687. https://doi.org/10.1103/PhysRevLett.75.1687

    Article  CAS  PubMed  Google Scholar 

  4. Pathria RK (1996) Statistical mechanics. Butterworht Heinemann, Oxford

    Google Scholar 

  5. Feynman R (1998) Statistical mechanics: a set of lectures. Advanced books classics. Avalon Publishing. https://books.google.de/books?id=pJ4_BAAAQBAJ

    Google Scholar 

  6. Pethick CJ, Smith H (2002) Bose-Einstein condensation in dilute gases. Cambridge Unviersity Press, Cambridge

    Google Scholar 

  7. Pitaevskii L, Stringari S (2018) Bose-Einstein condensation and superfluidity. Oxford University Press, New York

    Google Scholar 

  8. Liebisch TC, Schlagmüller M, Engel F, Nguyen H, Balewski J, Lochead G, Böttcher F, Westphal KM, Kleinbach KS, Schmid T, Gaj A, Löw R, Hofferberth S, Pfau T, Pérez-Ríos J, Greene CH (2016) Controlling rydberg atom excitations in dense background gases. J Phys B Atomic Mol Opt Phys 49(18):182001. https://doi.org/10.1088/0953-4075/49/18/182001

    Article  CAS  Google Scholar 

  9. Thomas LH (1927) The calculation of atomic fields. Math Proc Camb Philos Soc 23(5):542. https://doi.org/10.1017/S0305004100011683

    Article  CAS  Google Scholar 

  10. Fermi E (1927) Un metodo statistico per la determinazione di alcune propietà dell’atomo. Rend Accad Naz Lincei 6:602

    CAS  Google Scholar 

  11. Ashcroft N, Mermin N (2011) Solid state physics. Cengage Learning https://books.google.de/books?id=x_s_YAAACAAJ

  12. Baranov M, Dobrek L, Góral K, Góral K, Santos L, Lewenstein M (2002) Ultracold dipolar gases? A challenge for experiments and theory. Phys Scr T102(1):74

    Article  CAS  Google Scholar 

  13. Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T (2009) The physics of dipolar bosonic quantum gases. Rep Prog Phys 72:126401

    Article  CAS  Google Scholar 

  14. Baranov MA, Dalmonte M, Pupillo G, Zoller P Condensed matter theory of dipolar quantum gases. Chem Rev 112:5012 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T (2005) Bose-Einstein condensation of chromium. Phys Rev Lett 94:160401. https://doi.org/10.1103/PhysRevLett.94.160401

    Article  CAS  PubMed  Google Scholar 

  16. Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F (2012) Bose-Einstein condensation of erbium. Phys Rev Lett 108:210401

    Article  CAS  PubMed  Google Scholar 

  17. Lu M, Burdick NQ, Youn SH, Lev BL (2011) Strongly dipolar Bose-Einstein condensate of dysprosium. Phys Rev Lett 107:190401

    Article  CAS  PubMed  Google Scholar 

  18. Ni K-K, Ospelkaus S, Nesbitt DJ, Ye J Jin DS (2009) A dipolar gas of ultracold molecules. Phys Chem Chem Phys 11:9626

    Article  CAS  PubMed  Google Scholar 

  19. Deiglmayr J, Repp M, Grochola A, Dulieu O, Wester R, Weidemüller M (2011) Dipolar effects and collisions in an ultracold gas of LiCs molecules. J Phys Conf Ser 264:012014

    Article  CAS  Google Scholar 

  20. Park JW, Will SA, Zwierlein MW (2015) Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys Rev Lett 114:205302

    Article  CAS  PubMed  Google Scholar 

  21. Löw R, Weimer H, Nipper J, Balewski JB, Butscher B, Büchler HP, Pfau T (2012) An experimental and theoretical guide to strongly interacting rydberg gases. J Phys B Atomic Mol Opt Phys 45(11):113001

    Article  CAS  Google Scholar 

  22. Balewski JB, Krupp AT, Gaj A, Hofferberth S, Löw R, Pfau T (2014) Rydberg dressing: understanding of collective many-body effects and implications for experiments. New J Phys 16(6):063012

    Article  CAS  Google Scholar 

  23. Eiles MT, Lee H, Pérez-Ríos J, Greene CH (2017) Anisotropic blockade using pendular long-range rydberg molecules. Phys Rev A 95:052708. https://doi.org/10.1103/PhysRevA.95.052708

    Article  Google Scholar 

  24. Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovnazzi S, Pfau T (2007) Strong dipolar effects in a quantum ferrofluid. Nature (London) 448:672

    Article  CAS  Google Scholar 

  25. Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M, Pfau T (2016) Observation of quantum droplets in a strongly dipolar bose gas. Phys Rev Lett 116:215301. https://doi.org/10.1103/PhysRevLett.116.215301

    Article  CAS  PubMed  Google Scholar 

  26. Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T (2016) Observing the rosensweig instability of a quantum ferrofluid. Nature 530(7589):194. https://doi.org/10.1038/nature16485

    Article  CAS  PubMed  Google Scholar 

  27. Böttcher F, Schmidt J-N, Wenzel M, Hertkorn J, Guo M, Langen T, Pfau T (2019) Transient supersolid properties in an array of dipolar quantum droplets. Phys Rev X 9:011051. https://doi.org/10.1103/PhysRevX.9.011051

    Google Scholar 

  28. Chomaz L, Petter D, Ilzhöfer P, Natale G, Trautmann A, Politi C, Durastante G, van Bijnen RMW, Patscheider A, Sohmen M, Mark MJ, Ferlaino F (2019). Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys Rev X 9:021012. https://doi.org/10.1103/PhysRevX.9.021012

    CAS  Google Scholar 

  29. Natale G, van Bijnen RMW, Patscheider A, Petter D, Mark MJ, Chomaz L, Ferlaino F (2019) Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys Rev Lett 123:050402. https://doi.org/10.1103/PhysRevLett.123.050402

    Article  CAS  PubMed  Google Scholar 

  30. Frish A, Mark M, Aikawa K, Ferlaino F, Bohn JL, Makrides C, Petrov A, Kotochigova S (2014) Quantum chaos in ultracold collisions of gas-phase erbium atoms. Nature (London) 507:475

    Article  CAS  Google Scholar 

  31. Maier T, Kadau H, Schmitt M, Wenzel M, Ferrier-Barbut I, Pfau T, Frisch A, Baier S, Akiawa K, Chomaz L, Mark MJ, Ferlaino F, Makrides C, Tiesinga E, Petrov A, Kotochigova S (2015) Emergence of chaotic scattering in ultracold Er and Dy. Phys Rev X 5:041029

    PubMed  PubMed Central  Google Scholar 

  32. Yang BC, Pérez-Ríos J, Robicheaux F (2017) Classical fractals and quantum chaos in ultracold dipolar collisions. Phys Rev Lett 118:154101. https://doi.org/10.1103/PhysRevLett.118.154101

    Article  CAS  PubMed  Google Scholar 

  33. Mehring M (1983) Principles of high resolution NMR in solids. Springer, Berlin

    Book  Google Scholar 

  34. Sichter CP (1996) Principles of magnetic resonances. Springer, Berlin

    Google Scholar 

  35. Niederprüm T, Thomas O, Eichert T, Pérez-Ríos J, Greene CH, Ott H (2016) Observation of pendular butterfly Rydberg molecules. Nat Commun 7:12820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Demler E, Zhou F (2002) Spinor bosonic atoms in optical lattices: symmetry breaking and fractionalization. Phys Rev Lett 88:163001. https://doi.org/10.1103/PhysRevLett.88.163001

    Article  CAS  PubMed  Google Scholar 

  37. Ho T-L (1998) Spinor bose condensates in optical traps. Phys Rev Lett 81:742. https://doi.org/10.1103/PhysRevLett.81.742

    Article  CAS  Google Scholar 

  38. Song JL, Semenoff GW, Zhou F (2007) Uniaxial and biaxial spin nematic phases induced by quantum fluctuations. Phys Rev Lett 98:160408. https://doi.org/10.1103/PhysRevLett.98.160408

    Article  CAS  PubMed  Google Scholar 

  39. Ohmi T, Machida K (1998) Bose-einstein condensation with internal degrees of freedom in alkali atom gases. J Phys Soc Jpn 67(6):1822. https://doi.org/10.1143/JPSJ.67.1822

    Article  CAS  Google Scholar 

  40. Koashi M, Ueda M (2000) Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates. Phys Rev Lett 84:1066. https://doi.org/10.1103/PhysRevLett.84.1066

    Article  CAS  PubMed  Google Scholar 

  41. Ciobanu CV, Yip S-K, Ho T-L (2000) Phase diagrams of f = 2 spinor bose-einstein condensates. Phys Rev A 61:033607. https://doi.org/10.1103/PhysRevA.61.033607

    Article  Google Scholar 

  42. Kawaguchi Y, Ueda M (2012) Spinor Bose–Einstein condensates. Phys Rep 520(5):253. https://doi.org/10.1016/j.physrep.2012.07.005. http://www.sciencedirect.com/science/article/pii/S0370157312002098

  43. Zhou F, Semenoff GW (2006) Quantum insulating states of f = 2 cold atoms in optical lattices. Phys Rev Lett 97:180411. https://doi.org/10.1103/PhysRevLett.97.180411

    Article  CAS  PubMed  Google Scholar 

  44. Blasing DB, Pérez-Ríos J, Yan Y, Dutta S, Li C-H, Zhou Q, Chen YP (2018) Observation of quantum interference and coherent control in a photochemical reaction. Phys Rev Lett 121:073202. https://doi.org/10.1103/PhysRevLett.121.073202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Ultracold Gases. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_3

Download citation

Publish with us

Policies and ethics