Skip to main content

Quantum Scattering Theory

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 647 Accesses

Abstract

This chapter revolves around the theoretical minimum scattering theory to understand the main physical and chemical processes at cold and ultracold temperatures. The concept of scattering is introduced based on experimental grounds, followed by the classical and quantum definitions of the cross section. In this way, we hope to emphasize the main difference between the quantum and classical realms. Within the quantum theory of scattering, we pay special attention to the concept of scattering length and Wigner threshold laws owing to its importance in ultracold chemistry. In addition, we introduce some quantum mechanical effects on scattering observables such as Fano–Feshbach resonances and the glory effect, which is a very well-known phenomenon in chemical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is Green’s function for the two-body Schrödinger equation in spherical coordinates [2, 3].

  2. 2.

    This is only true for bosons. For fermions the lowest partial wave is l = 1.

  3. 3.

    A partial wave is each of the centrifugal quantum numbers, l, that contribute to the scattering process at a given collision energy.

  4. 4.

    We should talk about quasi-bound states, since they are above the threshold of the entrance and channel, and hence they are not truly bound states.

  5. 5.

    The refraction index in optics is analogous to the role of potential on classical mechanics [46, 47].

References

  1. Levine RD, Bernstein RB (1987) Molecular reaction dynamics and chemical reactivity. Oxford University Press, New York

    Google Scholar 

  2. Schwabl F (2007) Quantum mechanics. Springer, Berlin

    Google Scholar 

  3. Taylor JR (2000) Scattering theory. Dover, New York

    Google Scholar 

  4. Landau LD, Lifshitz EM (1958) Quantum mechanics. Butterworth-Heinemann. Oxford, UK

    Google Scholar 

  5. Levine RD (2005) Molecular reaction dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Zhdanov VM (2002) Transport processes in multicomponent plasma. Taylor and Francis, London

    Book  Google Scholar 

  7. Schiff LI (2010) Quantum mechanics. Mc Graw-Hill, New York

    Google Scholar 

  8. Galindo A, Pascual P (1990) Quantum mechanics, vols. I and II. Springer, Berlin

    Google Scholar 

  9. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  10. Whittaker ET, Watson GN (1927) A course of modern analysis. Cambridge University Press, New York

    Google Scholar 

  11. Wigner EP (1948) Phys Rev 73:1002

    Article  CAS  Google Scholar 

  12. Fermi E (1934) Sopra lo spostamento per pressione delle righe elevate delle serie spettrali. Nouvo Cimento 11:157

    Article  CAS  Google Scholar 

  13. Amaldi E, Segrè E (1934) Effetto della pressione sui termini elevati degli alcalini. Il Nuovo Cimento (1924–1942) 11(3):145. https://doi.org/10.1007/BF02959828

    Article  Google Scholar 

  14. Fermi E, Marshall L (1947) On the interaction between neutrons and electrons. Phys Rev 72:1139. https://doi.org/10.1103/PhysRev.72.1139

    Article  CAS  Google Scholar 

  15. Arthurs AM, Dalgarno A, Bates DR (1960) The theory of scattering by a rigid rotator. Proc R Soc Lond Ser A Math Phys Sci 256(1287):540. https://doi.org/10.1098/rspa.1960.0125

    Google Scholar 

  16. Mott NF, Massey H (1965) The theory of atomic collisions. Oxford University Press, New York

    Google Scholar 

  17. Balakrishnan N, Kharchenko V, Forley RC, Dalgarno A (1997) Complex scattering lengths in multi-channel atom-molecule collisions. Chem Phys Lett 280:5

    Article  CAS  Google Scholar 

  18. Krems RV (2018) Molecules in electromagnetic fields. Wiley, New York

    Book  Google Scholar 

  19. Feshbach H (1958) Unified theory of nuclear reactions. Ann Phys 5(4):357

    Article  CAS  Google Scholar 

  20. Feshbach H (1962) A unified theory of nuclear reactions. II. Ann Phys 19(2):287

    Google Scholar 

  21. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866. https://doi.org/10.1103/PhysRev.124.1866

    Article  CAS  Google Scholar 

  22. Inouye S, Andrews MR, Stenger J, Miesner HJ, Stamper-Kurn MD, Ketterle W (1998) Nature 392:151

    Article  CAS  Google Scholar 

  23. Donley EA, Clausen NR, Cornish SL, Roberts JL, Cornell EA, Wieman CE (2001) Nature 412:295

    Article  CAS  PubMed  Google Scholar 

  24. Roberts JL, Clausen NR, Burke JP Jr, Greene CH, Cornell EA, Wieman CE (2001) Phys Rev Lett 86:010403

    Article  CAS  Google Scholar 

  25. Cornish SL, Thompsom ST, Wieman CE (2006) Phys Rev Lett 96:1740401

    Article  CAS  Google Scholar 

  26. Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr LD, Castin Y, Salomon C (2002) Science 296:1290

    Article  CAS  PubMed  Google Scholar 

  27. Strecker KE, Partdrige GB, Truscott AG, Hullet RG (2002) Nature 417:150

    Article  CAS  PubMed  Google Scholar 

  28. Weber T, Herbig J, Nägerl HC, Grimm R (2003) Phys Rev Lett 91:123201

    Article  CAS  PubMed  Google Scholar 

  29. Rychtarik D, Engeser B, Nägerl HC, Grimm R (2004) Phys Rev Lett 92:173003

    Article  CAS  PubMed  Google Scholar 

  30. Ni KK, Ospelkaus S, de Miranda MHG, Pe’er A, Neyenhuis B, Zirbel JJ, Kotochigova S, Julienne PS, Jin DS, Ye J (2008) A high phase-space-density gas of polar molecules. Science 322(5899):231. http://science.sciencemag.org/content/322/5899/231.abstract

    Article  CAS  PubMed  Google Scholar 

  31. Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R, Bouloufa N, Dulieu O, Ritsch H, Nägerl H-C (2008) Quantum gas of deeply bound ground state molecules. Science 321(5892):1062. https://science.sciencemag.org/content/321/5892/1062.full.pdf, https://science.sciencemag.org/content/321/5892/1062

  32. Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R, Adegunde J, Hutson JM, Nägerl HC (2010) An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat Phys 6:265

    Article  CAS  Google Scholar 

  33. Chin C, Grimm R, Julienne PS, Tiesinga E (2010) Feshbach resonances in ultracold gases. Rev Mod Phys 82:1225

    Article  CAS  Google Scholar 

  34. Moerdijk AJ, Verhaar BJ, Axelsson A (1995) Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys Rev A 51:4852

    Article  CAS  PubMed  Google Scholar 

  35. Pérez-Ríos J, Campos-Martínez J, Hernández MI (2011) Ultracold o2 + o2 collisions in a magnetic field: on the role of the potential energy surface. J Chem Phys 134(12):124310. https://doi.org/10.1063/1.3573968

    Article  CAS  PubMed  Google Scholar 

  36. Tscherbul TV, Suleimanov YV, Aquilanti V, Krems RV (2009) Magnetic field modification of ultracold molecule–molecule collisions. New J Phys 11(5):055021

    Article  CAS  Google Scholar 

  37. Maier T, Kadau H, Schmitt M, Wenzel M, Ferrier-Barbut I, Pfau T, Frisch A, Baier S, Akiawa K, Chomaz L, Mark MJ, Ferlaino F, Makrides C, Tiesinga E, Petrov A, Kotochigova S (2015) Emergence of chaotic scattering in ultracold Er and Dy. Phys Rev X 5:041029

    PubMed  PubMed Central  Google Scholar 

  38. Frish A, Mark M, Aikawa K, Ferlaino F, Bohn JL, Makrides C, Petrov A Kotochigova S (2014) Quantum chaos in ultracold collisions of gas-phase erbium atoms. Nature (London) 507:475

    Article  CAS  Google Scholar 

  39. Metha ML (1967) Random matrices and the statistical theory of energy levels. Academic Press, New York

    Google Scholar 

  40. Gutzwiller MC (1990) Chaos in classical and quantum mechanics. Springer, New York

    Book  Google Scholar 

  41. Izrailev FM (1990) Simple models of quantum chaos: spectrum and eigenfunctions. Phys Pep 196:299

    Google Scholar 

  42. Bohigas O, Giannoni MJ, Schmidt C (1984) Characterization of chaotic quantu spectra and universality of level fluctuation laws. Phys Rev Lett 52:1

    Article  Google Scholar 

  43. Yang BC, Pérez-Ríos J, Robicheaux F (2017) Classical fractals and quantum chaos in ultracold dipolar collisions. Phys Rev Lett 118:154101. https://doi.org/10.1103/PhysRevLett.118.154101

    Article  CAS  PubMed  Google Scholar 

  44. Child MS (1974) Molecular collision theory. Academic Press, New York

    Google Scholar 

  45. Ford KW, Wheeler JA (1959) Semiclassical description of scattering. Ann Phys 7(3):259

    Article  Google Scholar 

  46. Guenther RD (1990) Modern optics. Wiley, New York

    Google Scholar 

  47. Born M, Wolf E (1999) Priciples of optics. Cambridge University Press, New York

    Book  Google Scholar 

  48. Audouard P, Duplàa E, Vigué V (1995) Europhys Lett 32:397

    Article  CAS  Google Scholar 

  49. Kong P, Mason EA, Munn RJ (1969) Am J Phys 38:294

    Article  Google Scholar 

  50. Massey HSW, Mohr CBO (1934) Proc R Soc Lond A 144:188

    Article  CAS  Google Scholar 

  51. Bernstein RB (1962) J Chem Phys 37:1880

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Quantum Scattering Theory. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_2

Download citation

Publish with us

Policies and ethics