Skip to main content

Ultracold Physics and the Quest of New Physics

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 562 Accesses

Abstract

At ultracold temperatures (T\(\lesssim \) 1 mK), atoms and molecules move very slowly, which translates into negligible Doppler broadening of spectra. In addition, owing to the diluteness of typical ultracold systems, the pressure broadening of the spectroscopy lines is negligible. In this scenario, atoms and molecules are in a well-defined rovibrational state and in a specific translational state that can be further tuned. Therefore, ultracold systems are a perfect arena for developing high-precision spectroscopic tools. Indeed, ultracold physics has played a major role in the evolution of high-precision spectroscopy to levels hardly imaginable at the beginning of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polchinski J (1998) String theory: volume 1: an introduction to the bosonic string, vol 1. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511816079. https://www.cambridge.org/core/books/string-theory/30409AF2BDE27D53E275FDA395AB667A

  2. Green MB, Schwarz JH, Witten E (2012) Superstring theory: 25th anniversary edition: volume 1: introduction, vol 1. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139248563. https://www.cambridge.org/core/books/superstring-theory/35152940E2D9C3B0BD327EB7FF74DBBE

  3. Barrow JD, Tipler FJ (1986) The anthropic cosmological principle. Oxford University Press, New York

    Google Scholar 

  4. Steinhardt P (2014) Big bang blunder bursts the multiverse bubble. Nature 510(7503):9. https://doi.org/10.1038/510009a

    Article  CAS  Google Scholar 

  5. Carr B (2007) Universe or multiverse? Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107050990. https://www.cambridge.org/core/books/universe-or-multiverse/38972284ED1AECC0A692CF429DF57D53

  6. Uzan J-P (2003) The fundamental constants and their variation: observational and theoretical status. Rev Mod Phys 75:403. https://doi.org/10.1103/RevModPhys.75.403

    Article  CAS  Google Scholar 

  7. Hudson ER, Lewandowski HJ, Sawyer BC, Ye J (2006) Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys Rev Lett 96:143004. https://doi.org/10.1103/PhysRevLett.96.143004

    Article  Google Scholar 

  8. Kanekar N, Carilli CL, Langston GI, Rocha G, Combes F, Subrahmanyan R, Stocke JT, Menten KM, Briggs FH, Wiklind T (2005) Constraints on changes in fundamental constants from a cosmologically distant oh absorber or emitter. Phys Rev Lett 95:261301. https://doi.org/10.1103/PhysRevLett.95.261301

    Article  CAS  Google Scholar 

  9. Reinhold E, Buning R, Hollenstein U, Ivanchik A, Petitjean P, Ubachs W (2006) Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of h2 spectra. Phys Rev Lett 96:151101. https://doi.org/10.1103/PhysRevLett.96.151101

    Article  CAS  Google Scholar 

  10. Flambaum VV, Kozlov MG (2007) Limit on the cosmological variation of m pm e from the inversion spectrum of ammonia. Phys Rev Lett 98:240801. https://doi.org/10.1103/PhysRevLett.98.240801

    Article  CAS  Google Scholar 

  11. DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S, Tiesinga E (2008) Enhanced sensitivity to variation of m em p in molecular spectra. Phys Rev Lett 100:043202. https://doi.org/10.1103/PhysRevLett.100.043202

    Article  CAS  Google Scholar 

  12. Arkani-Hamed N, Dimopoulos S, Dvali G (1998) The hierarchy problem and new dimensions at a millimeter. Phys Lett B 429(3):263. https://doi.org/10.1016/S0370-2693(98)00466-3. http://www.sciencedirect.com/science/article/pii/S0370269398004663

  13. Antoniadis I, Arkani-Hamed N, Dimopoulos S, Dvali G (1998) New dimensions at a millimeter to a fermi and superstrings at a tev. Phys Lett B 436(3):257. https://doi.org/10.1016/S0370-2693(98)00860-0. http://www.sciencedirect.com/science/article/pii/S0370269398008600

  14. Adelberger EG, Heckel BR, Nelson AE (2003) Tests of the gravitational inverse-square law. Annu Rev Nucl Part Sci 53(1):77. https://doi.org/10.1146/annurev.nucl.53.041002.110503

    Article  CAS  Google Scholar 

  15. Ubachs W, Koelemeij J, Eikema K, Salumbides E (2016) Physics beyond the standard model from hydrogen spectroscopy. J Mol Spectrosc 320:1

    Article  CAS  Google Scholar 

  16. Salumbides EJ, Koelemeij JCJ, Komasa J, Pachucki K, Eikema KSE, Ubachs W (2013) Bounds on fifth forces from precision measurements on molecules. Phys Rev D 87:112008. https://doi.org/10.1103/PhysRevD.87.112008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Ultracold Physics and the Quest of New Physics. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_12

Download citation

Publish with us

Policies and ethics