Skip to main content

Cold Chemical Reactions Between Molecular Ions and Neutral Atoms

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 587 Accesses

Abstract

In previous chapters we have studied physical and chemical processes in atom–ion hybrid systems. However, the field of hybrid atom–ion systems is evolving toward the study of molecular ion–atom interactions. This emerging field brings a new degree of control into play, i.e., the internal degrees of freedom in one of the colliding partners. The presence of internal degrees of freedom is crucial to elucidating the ultimate nature of ion–neutral collisions, including stereochemical effects, and the possibility of sympathetic cooling of molecular ions. Furthermore, molecular ion–atom hybrid systems are interesting for the development of novel high-precision spectroscopy techniques for rotational states of molecular ions [1,2,3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, the same condition applies to r , which can be used to change from trajectory to trajectory where the vibrational motion starts [16].

  2. 2.

    Here, r = r 12 based on Fig. 11.2.

  3. 3.

    This statement is equivalent to saying that charge-transfer processes are not considered.

  4. 4.

    When the Langer approximation is used for the rotational quantum number, i.e., j(j + 1) = (j + 1∕2)2, the final rotational quantum number is given as \(j'=-1/2+\sqrt {\frac {\vec {J}'\cdot \vec {J}'}{\hbar ^2}}\).

  5. 5.

    It is worth recalling that the rate coefficient is defined as 〈σv〉, where 〉〈 stands for the thermal averaged.

  6. 6.

    The statistical capture model also presents some difficulties when the three-body system shows a very shallow well depth.

References

  1. Schlemmer S, Kuhn T, Lescop E, Gerlich D (1999) Laser excited N\(_2^+\) in a 22-pole ion trap. Int J Mass Spectrom 185:589

    Google Scholar 

  2. Schlemmer S, Lescop E, von Richthofen J, Gerlich D, Smith MA (2002) Laser induced reactions in a 22-pole ion trap: C2H\(_2^*\) + 3 + H2 ->C2H\(_3^+\)+ H. J Chem Phys 117:2068

    Google Scholar 

  3. Brünken S, Kluge L, Stoffels A, Pérez-Ríos J, Schlemmer S (2017) Rotational state-dependent attachment of he atoms to cold molecular ions: an action spectroscopic scheme for rotational spectroscopy. J Mol Spectrosc 332:67

    Article  Google Scholar 

  4. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecualr theory of transport in gases. Wiley, New York

    Google Scholar 

  5. McCourt FRW, Beenaker JJM, Köhler WE, Kuscer I (1991) Nonequilibrium phenomena in polyatomic gases. Oxford University Press/Clarendon, Oxford

    Google Scholar 

  6. Zhdanov VM (2002) Transport processes in multicomponent plasma. Taylor and Francis, London

    Google Scholar 

  7. Montero S, Pérez-Ríos J (2014) Rotational relaxation in molecular hydrogen and deuterium: theory versus acoustic experiments. J Chem Phys 141:2014

    Google Scholar 

  8. Sotecklin T, Halvick P, Gannouni MA, Holchaf M, Kotochigova S, Hudson ER (2016) Explanation of efficient quenching of molecular ion vibrational motion by ultracold atoms. Nat Commun 7:11234

    Article  Google Scholar 

  9. Tacconi M, Gianturco FA, Yurtsever E, Caruso D (2011) Cooling and quenching of 24MgH4(x1σ +) by 4He(1s) in a coulomb trap: a quantum study of the dynamics. Phys Rev A 84:013412

    Article  Google Scholar 

  10. Hauser D, Lee S, Carelli F, Spieler S, Lakhmanskaya O, Endres ES, Kumar SS, Gianturco F, Wester R (2015) Rotational state-changing cold collisions of hydroxyl ions with helium. Nat Phys 11:467

    Article  CAS  Google Scholar 

  11. Stoecklin T, Voronin A (2005) Phys Rev A 72:042714

    Article  Google Scholar 

  12. Stoecklin T, Voronin A (2008) Eur Phys J D 46:259

    Article  CAS  Google Scholar 

  13. Stoecklin T, Voronin A (2011) Vibrational and rotational cooling of NO+ in collisions with He. J Chem Phys 134:204312

    Article  CAS  Google Scholar 

  14. P’erez-Ríos J, Robicheaux F (2016) Rotational relaxation of molecular ions in a buffer gas. Phys Rev A 94:032709

    Article  Google Scholar 

  15. Karplus M, Porter RN, Sharma RD (1965) Exchange reactions with activation energy. I. Simple barrier potential for (H,H2. J Chem Phys 43:3259

    Google Scholar 

  16. Truhlar DG, Muckerman JT (1979) Atom-molecule collision theory: a guide for the Experimentalist, chapter Reactive scattering Cross sections III: quasiclassical and semiclassical methdos. Plenum Press, New York, pp 505–561

    Google Scholar 

  17. Pérez-Ríos J, Ragole S, Wang J, Greene CH (2014) Comparison of classical and quantal calculations of helium three-body recombination. J Chem Phys 140:044307

    Article  Google Scholar 

  18. Greene CH, Giannakeas P, Pérez-Ríos J (2017) Universal few-body physics and cluster formation. Rev Mod Phys 89:035006. https://doi.org/10.1103/RevModPhys.89.035006

    Article  Google Scholar 

  19. Pattengill MD (1979) Rotational excitation III: classical trajectory methods. Springer US, Boston, pp 359–375. https://doi.org/10.1007/978-1-4613-2913-8_10

    Google Scholar 

  20. Bonnet L, Rayez JC (1997) Quasiclassical trajectory method for molecular scattering processes: necessity of a weighted binning approach. Chem Phys Lett 277(1):183. https://doi.org/10.1016/S0009-2614(97)00881-6. http://www.sciencedirect.com/science/article/pii/S0009261497008816

  21. Balucani N, Casavecchia P, Bañares L, Aoiz FJ, Gonzalez-Lezana T, Honvault P, Launay J-M (2006) Experimental and theoretical differential cross sections for the n(2d) + h2 reaction. J Phys Chem A 110(2):817. https://doi.org/10.1021/jp054928v

    Article  CAS  PubMed  Google Scholar 

  22. Bañares L, Aoiz FJ, Honvault P, Bussery-Honvault B, Launay JM (2002) Quantum mechanical and quasi-classical trajectory study of the c(1d)+h2 reaction dynamics. J Chem Phys 118(2):565. https://doi.org/10.1063/1.1527014

    Article  Google Scholar 

  23. Czakó G, Bowman JM (2009) Quasiclassical trajectory calculations of correlated product distributions for the f+chd3(v1=0,1) reactions using an ab initio potential energy surface. J Chem Phys 131(24):244302. https://doi.org/10.1063/1.3276633

    Article  PubMed  Google Scholar 

  24. Achymski K, Meintert F (2020) Vibrational quenching of weakly bound cold molecular ions immersed in their parent gas. Appl Sci 10:2371. https://www.mdpi.com/2076-3417/10/7/2371

    Article  Google Scholar 

  25. Levine RD, Bernstein RB (1987) Molecular reaction dynamics and chemical reactivity. Oxford University Press, New York

    Google Scholar 

  26. Lara M, Jambrina PG, Aoiz FJ, Launay JM (2015) Cold and ultracold dynamics of the barrierless D+ + H2 reaction: quantum reactive calculations for ∝ r −4 long range interaction potentials. J Chem Phys 143(20):204305. https://doi.org/10.1063/1.4936144

    Article  Google Scholar 

  27. Strauss C, Takekoshi T, Winker K, Grimm R, Denschlag JH (2010) Phys Rev A 82:052514

    Article  Google Scholar 

  28. Pérez-Ríos J (2019) Vibrational quenching and reactive processes of weakly bound molecular ions colliding with atoms at cold temperatures. Phys Rev A 99:022707. https://doi.org/10.1103/PhysRevA.99.022707

    Article  Google Scholar 

  29. Bowman JM (2014) Roaming. Mol Phys 112:2516

    Article  CAS  Google Scholar 

  30. Li Z, Heller EJ (2012) Cold collision of complex polyatomic molecules. J Chem Phys 136:054306

    Article  PubMed  Google Scholar 

  31. Pérez-Ríos J, Greene CH (2015) Communication: classical threhold law for ion-neutral-neutral three-body recombination. J Chem Phys 143:041105

    Article  Google Scholar 

  32. Krükow A, Mohamadi A, Härter A, Denschlag JH, Pérez-Ríos J, Greene CH (2016) Energy scaling of cold atom-atom-ion three-body recombination. Phys Rev Lett 116:193201

    Article  Google Scholar 

  33. Härter A, Denschlag JH (2014) Cold atom-ion experiemtns in hybrid traps. Contemp Phys 55:33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). Cold Chemical Reactions Between Molecular Ions and Neutral Atoms. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_11

Download citation

Publish with us

Policies and ethics