Skip to main content

The Realm of Cold and Ultracold

  • Chapter
  • First Online:
An Introduction to Cold and Ultracold Chemistry
  • 592 Accesses

Abstract

Chemistry, as we know and experience it every day, mostly occurs at room temperature (T = 298 K). At lower temperatures, the molecules in a gas have lower velocities, and hence, for the same density, collisions are less frequent. Then, one may think that as the temperature drops, the reaction rate will follow the same fate. This classical vision is partially true. However, one needs to keep in mind that as the temperature of a gas drops, quantum mechanics takes over, and phenomena insignificant at room temperature will dominate the physics and chemistry in this regime. One of these quantum phenomena is the onset of resonances [1–10], which are washed out at room temperature. Other interesting quantum phenomena are the threshold behaviors of elastic and inelastic collisions, also known as the Wigner threshold laws [11]. These predict that the elastic cross section tends toward a constant value as the temperature approaches zero, whereas the inelastic cross section increases with \(1/\sqrt {T}\), where T is the temperature of the gas, as we will explain in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this statement we do not consider the temperature reached in laboratories on earth.

  2. 2.

    Thermal is more precise, although we use hot here to emphasize its difference concerning the neutral–neutral case.

  3. 3.

    Physics beyond the standard model.

References

  1. Krems RV (2008) Cold controlled chemistry. Phys Chem Chem Phys 10:4079. https://doi.org/10.1039/B802322K

    Article  CAS  PubMed  Google Scholar 

  2. Hutson JM, Soldán P (2007) Molecular collisions in ultracold atomic gases. Int Rev Phys Chem 26(1):1

    Article  CAS  Google Scholar 

  3. Weck PF, Balakrishnan N (2006) Importance of long-range interactions in chemical reactions at cold and ultracold temperatures. Int Rev Phys Chem 25(3):283. https://doi.org/10.1080/01442350600791894

    Article  CAS  Google Scholar 

  4. Quéméner G, Julienne PS (2012) Ultracold molecules under control! Chem Rev 112:4949

    Article  PubMed  Google Scholar 

  5. Carr LD, DeMille D, Krems RV Ye J (2009) Cold and ultracold molecules: science, technology and applications. New J Phys 11:055049

    Article  Google Scholar 

  6. Dulieu O, Gabbanini C (2009) The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics. Rep Progress Phys 72(8):086401

    Article  Google Scholar 

  7. Dulieu O, Osterwalder A (eds) (2018) Cold chemistry. Theoretical and computational chemistry series. The Royal Society of Chemistry. https://doi.org/10.1039/9781782626800

  8. Weiner J (2003) Cold and ultracold collisions in quantum microscopic and mesoscopic systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Krems RV (2018) Molecules in electromagnetic fields. Wiley, New York

    Book  Google Scholar 

  10. Krems RV, Stwalley WC, Friedrich B (eds) (2009) Cold molecules: theory, experiment, applications. CRC Press, Boca Raton

    Google Scholar 

  11. Wigner EP (1948) Phys Rev 73:1002

    Article  CAS  Google Scholar 

  12. Prokhorenko VI, Nagy AN, Waschuk SA, Brown LS, Birge RR Miller RJD (2006) Coherent control of retinal isomerization in bacteriorhodopsin. Science 313:1257

    Article  CAS  PubMed  Google Scholar 

  13. Levin L, Skomorowski W, Rybak L, Kosloff R, Koch CP, Amitay Z (2015) Coherent control of bond making. Phys Rev Lett 114:233003

    Article  PubMed  Google Scholar 

  14. Shapiro M, Brumer P (2012) Quantum control of molecular processes. Wiley, New York

    Google Scholar 

  15. Kosloff R, Rice SA, Gaspar P, Tersegni S, Tannor DJ (1989) Wavepacket dancing: achieving chemical selectivity by shaping light pulses. Chem Phys 139:201

    Article  CAS  Google Scholar 

  16. Marinescu M, You L (1998) Controlling atom-atom interaction at ultralow temperatures by dc electric fields. Phys Rev Lett 81:4596. https://doi.org/10.1103/PhysRevLett.81.4596

    Article  CAS  Google Scholar 

  17. Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885. https://doi.org/10.1103/RevModPhys.80.885

    Article  CAS  Google Scholar 

  18. Aidelsburger M, Atala M, Lohse M, Barreiro JT, Paredes B, Bloch I (2013) Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. Phys Rev Lett 111:185301. https://doi.org/10.1103/PhysRevLett.111.185301

    Article  CAS  PubMed  Google Scholar 

  19. DeMille D (2002) Quantum computation with trapped polar molecules. Phys Rev Lett 88:067901. https://doi.org/10.1103/PhysRevLett.88.067901

    Article  CAS  PubMed  Google Scholar 

  20. Saffman M, Walker TG, Molmer K (2010) Quantum information with Rydberg atoms. Rev Mod Phys 82:2313

    Article  CAS  Google Scholar 

  21. Chin C, Flambaum VV, Kozlov MG (2009) Ultracold molecules: new probes on the variation of fundamental constants. New J Phys 11(5):055048

    Article  Google Scholar 

  22. Schiller S, Korobov V (2005) Tests of time independence of the electron and nuclear masses with ultracold molecules. Phys Rev A 71:032505. https://doi.org/10.1103/PhysRevA.71.032505

    Article  Google Scholar 

  23. DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S, Tiesinga E (2008) Enhanced sensitivity to variation of m em p in molecular spectra. Phys Rev Lett 100:043202. https://link.aps.org/doi/10.1103/PhysRevLett.100.043202

    Article  CAS  PubMed  Google Scholar 

  24. Safronova MS, Budker D, DeMille D, Kimball DFJ, Derevianko A, Clark CW (2018) Search for new physics with atoms and molecules. Rev Mod Phys 90:025008. https://doi.org/10.1103/RevModPhys.90.025008

    Article  CAS  Google Scholar 

  25. Davis KB, Mewes MO, Andrews MR, van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Bose-einstein condensation in a gas of sodium atoms. Phys Rev Lett 75:3969. https://doi.org/10.1103/PhysRevLett.75.3969

    Article  CAS  PubMed  Google Scholar 

  26. Bradley CC, Sackett CA, Tollett JJ, Hulet RG (1995) Evidence of bose-einstein condensation in an atomic gas with attractive interactions. Phys Rev Lett 75:1687. https://doi.org/10.1103/PhysRevLett.75.1687

    Article  CAS  PubMed  Google Scholar 

  27. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of bose-einstein condensation in a dilute atomic vapor. Science 269:198

    Article  CAS  PubMed  Google Scholar 

  28. Pethick CJ, Smith H (2002) Bose-Einstein condensation in dilute gases. Cambridge Unviersity Press, Cambridge

    Google Scholar 

  29. Bose (1924) Plancks gesetz und lichtquantenhypothese. Zeitschrift für Physik 26(1):178. https://doi.org/10.1007/BF01327326

  30. Einstein A (2006) Quantentheorie des einatomigen idealen Gases. Wiley, pp 237–244

    Google Scholar 

  31. Stone A (2013) The theory of intermolecular forces, 2nd edn. Oxford University Press, UK

    Book  Google Scholar 

  32. Levine RD, Bernstein RB (1987) Molecular reaction dynamics and chemical reactivity. Oxford University Press, New York

    Google Scholar 

  33. Landau LD, Lifshitz EM (1976) Mechanics. Elsevier Butterworth-Heinemann, Burlington

    Google Scholar 

  34. Jones KM, Tiesinga E, Lett PD, Julienne PS (2006) Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev Mod Phys 78:483. https://doi.org/10.1103/RevModPhys.78.483

    Article  CAS  Google Scholar 

  35. Marinescu M (1998) Dispersion coefficients for alkali-metal dimers. https://www.phys.uconn.edu/~rcote/Dispersion/AlkaliMetal.html

  36. Molof R, Schwartz H, Miller T, Bederson B (1974) Measurements of electric dipole polarizabilities of the alkali-metal atoms and the metastable noble-gas atoms. Phys Rev A 10:1131. https://doi.org/10.1103/PhysRevA.10.1131

    Article  CAS  Google Scholar 

  37. Ekstrom C, Schmiedmayer J, Chapman M, Hammond T, Pritchard D (1995) Measurement of the electric polarizability of sodium with an atom interferometer. Phys Rev A 51(5):3883

    Article  CAS  PubMed  Google Scholar 

  38. Gregoire MD, Hromada I, Holmgren WF, Trubko R, Cronin AD (2015) Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry. Phys Rev A 92:052513. https://doi.org/10.1103/PhysRevA.92.052513

    Article  Google Scholar 

  39. Ubachs W, Koelemeij J, Eikema K, Salumbides E (2016) Physics beyond the standard model from hydrogen spectroscopy. J Mol Spectrosc 320:1

    Article  CAS  Google Scholar 

  40. Salumbides EJ, Schellekens AN, Gato-Rivera B, Ubachs W (2015) Constraints on extra dimension from precision molecular spectroscopy. New J Phys 17:033015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ríos, J. (2020). The Realm of Cold and Ultracold. In: An Introduction to Cold and Ultracold Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-55936-6_1

Download citation

Publish with us

Policies and ethics