Skip to main content

Quasi-Fuchsian Co-Minkowski Manifolds

  • Chapter
  • First Online:
In the Tradition of Thurston

Abstract

Since the work of W.P. Thurston, some maps from Teichmüller space into itself can be described using the extrinsic geometry of surfaces in three dimensional hyperbolic space. Similarly, since the work of G. Mess, some of these maps can be described using the extrinsic geometry of surfaces in Lorentzian space-forms. Here we will use the degenerate geometry of co-Minkowski space to prove, and generalize to any dimension, a theorem of Thurston that says that the total length of measured geodesic laminations provides an asymmetric norm on the tangent bundle of Teichmüller space.

The main part of this chapter is an introduction to the geometry of co-Minkowksi space, the space of unoriented spacelike hyperplanes of the Minkowski space. Affine deformations of cocompact lattices of hyperbolic isometries act on it, in a way similar to the way that quasi-Fuchsian groups act on hyperbolic space. In particular, there is a convex core construction. There is also a unique “mean” hypersurface, i.e. with traceless second fundamental form. The mean distance between the mean hypersurface and the lower boundary of the convex core endows the space of affine deformations of a given lattice with an asymmetric norm. The symmetrization of the asymmetric norm is simply the volume of the convex core.

In dimension 2 + 1, the asymmetric norm is the total length of the bending lamination of the lower boundary component of the convex core. We then obtain an extrinsic proof of the theorem of Thurston mentioned above.

We also exhibit and comment on the Anosov-like character of these deformations, similar to the Anosov character of the quasi-Fuchsian representations pointed out in Guichard and Wienhard (Invent Math 190(2):357–438, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We call a d-dimensional model space the quotient by the antipodal map of a pseudo-sphere in \({\mathbb R}^{d+1}\), see [28].

  2. 2.

    For a pseudo-Riemannian manifold, the sectional curvature is computed only for planes of the tangent space on which the metric is non-degenerate.

  3. 3.

    The surface in Fig. 16.2 would deserve the name half-pipe. The name co-Minkowski space comes from the particular situation of this co-pseudo-Euclidean space, see the corresponding entry in the Encyclopaedia of Mathematics.

  4. 4.

    This fact was noted to the first author by Andrea Seppi.

References

  1. L. Andersson, T. Barbot, R. Benedetti, F. Bonsante, W.M. Goldman, F. Labourie, K.P. Scannell, J.-M. Schlenker, Notes on: “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45; mr2328921] by G. Mess. Geom. Dedicata 126, 47–70 (2007)

    Google Scholar 

  2. B.N. Apanasov, Bending and stamping deformations of hyperbolic manifolds. Ann. Global Anal. Geom. 8(1), 3–12 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Barbot, Globally hyperbolic flat space-times. J. Geom. Phys. 53(2), 123–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Barbot, Three-dimensional Anosov flag manifolds. Geom. Topol. 14(1), 153–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian. J. Differ. Geom. 101(1), 1–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Barbot, Lorentzian Kleinian groups, in Handbook of Group Actions. Vol. III Advanced Lectures in Mathematics, vol. 40 (International Press, Somerville, MA, 2018), pp. 311–358

    Google Scholar 

  7. A. Bart, K.P. Scannell, A note on stamping. Geom. Dedicata 126, 283–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Benedetti, F. Bonsante, Canonical Wick rotations in 3-dimensional gravity. Mem. Am. Math. Soc. 198(926), viii+164 (2009)

    Google Scholar 

  9. I. Bivens, J.-P. Bourguignon, A. Derdziński, D. Ferus, O. Kowalski, T. Klotz Milnor, V. Oliker, U. Simon, W. Strübing, K. Voss. Discussion on Codazzi-tensors, in Global Differential Geometry and Global Analysis (Berlin, 1979). Lecture Notes in Mathematics, vol. 838 (Springer, Berlin/New York, 1981), pp. 243–299

    Google Scholar 

  10. M. Bridgeman, R. Canary, F. Labourie, A. Sambarino, The pressure metric for Anosov representations. Geom. Funct. Anal. 25(4), 1089–1179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Bonahon, Geodesic laminations on surfaces, in Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998). Contemporary Mathematics, vol. 269 (American Mathematical Society, Providence, RI, 2001), pp. 1–37

    Google Scholar 

  12. F. Bonsante, Flat spacetimes with compact hyperbolic Cauchy surfaces. J. Differ. Geom. 69(3), 441–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Bonsante, F. Fillastre, The equivariant Minkowski problem in Minkowski space. Ann. Inst. Fourier (Grenoble) 67(3), 1035–1113 (2017)

    Google Scholar 

  14. F. Bonsante, J.-M. Schlenker, Fixed points of compositions of earthquakes. Duke Math. J. 161(6), 1011–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Bonsante, A. Seppi, On Codazzi tensors on a hyperbolic surface and flat Lorentzian geometry. Int. Math. Res. Not. (2), 343–417 (2016)

    MathSciNet  MATH  Google Scholar 

  16. F. Bonsante, A. Seppi, A. Tamburelli, On the volume of anti–de Sitter maximal globally hyperbolic three-manifolds. Geom. Funct. Anal. 27(5), 1106–1160 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.F. Brock, The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J. Am. Math. Soc. 16(3), 495–535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.D. Canary, D.B.A. Epstein, P.L. Green, Notes on notes of Thurston [mr0903850], in Fundamentals of Hyperbolic Geometry: Selected Expositions. London Mathematical Society Lecture Note series, vol. 328, pp. 1–115 (Cambridge University Press, Cambridge, 2006) With a new foreword by Canary

    Google Scholar 

  19. R.D. Canary, M. Lee, M. Stover, Amalgam Anosov representations. Geom. Topol. 21(1), 215–251 (2017). With an appendix by Canary, Lee, Andrés Sambarino and Stover

    Google Scholar 

  20. J. Danciger, Geometric transitions: From hyperbolic to AdS geometry. PhD thesis, Stanford University, 2011

    Google Scholar 

  21. J. Danciger, A geometric transition from hyperbolic to anti-de Sitter geometry. Geom. Topol. 17(5), 3077–3134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Danciger, F. Guéritaud, F. Kassel, Convex cocompact actions in real projective geometry. ArXiv e-prints, April 2017

    Google Scholar 

  23. J. Danciger, F. Guéritaud, F. Kassel, Convex cocompactness in pseudo-Riemannian hyperbolic spaces. Geom. Dedicata 192, 87–126 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Danciger, S. Maloni, J.-M. Schlenker, Polyhedra inscribed in a quadric. Invent. Math. 221(1), 237– 300 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. T.A. Drumm, W.M. Goldman, The geometry of crooked planes. Topology 38(2), 323–351 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. D.B.A. Epstein, A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces [mr0903852], in Fundamentals of Hyperbolic Geometry: Selected Expositions. London Mathematical Society Lecture Note Series, vol. 328 (Cambridge University Press, Cambridge, 2006), pp. 117–266

    Google Scholar 

  27. F. Fillastre, A. Seppi, Generalization of a formula of Wolpert for balanced geodesic graphs on closed hyperbolic surfaces. Annales Henri Lebesgue 3, 873–899 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Fillastre, A. Seppi, Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions, in Eighteen Essays in Non-Euclidean Geometry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 29 (European Mathematical Society, Zürich, 2019), pp. 321–409

    Google Scholar 

  29. F. Fillastre, G. Smith, Group actions and scattering problems in Teichmüller theory, in Handbook of Group Actions. Vol. III. Advanced Lectures in Mathematics, vol. 40 (International Press, Somerville, MA, 2018), pp. 359–417

    Google Scholar 

  30. F. Fillastre, G. Veronelli, Lorentzian area measures and the Christoffel problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(2), 383–467 (2016)

    Google Scholar 

  31. M. Ghomi, The problem of optimal smoothing for convex functions. Proc. Am. Math. Soc. 130(8), 2255–2259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Ghosh, Anosov structures on Margulis spacetimes. Groups Geom. Dyn. 11(2), 739–775 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (Springer, Berlin, 2001). Reprint of the 1998 edition

    Google Scholar 

  34. W.M. Goldman, The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2), 200–225 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. W.M. Goldman, Flat affine, projective and conformal structures on manifolds: a historical perspective, in Geometry in History, ed. by S.G. Dani, A. Papadopoulos (Springer, Cham, 2019), pp. 515–522

    Chapter  Google Scholar 

  36. F. Guéritaud, O. Guichard, F. Kassel, A. Wienhard, Anosov representations and proper actions. Geom. Topol. 21(1), 485–584 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. O. Guichard, A. Wienhard, Anosov representations: domains of discontinuity and applications. Invent. Math. 190(2), 357–438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Gutiérrez, The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and their Applications, vol. 44 (Birkhäuser Boston Inc., Boston, MA, 2001)

    Google Scholar 

  39. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Classics in Mathematics (Springer, Berlin, 2003). Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]

    Google Scholar 

  40. I. Izmestiev, Statics and kinematics of frameworks in Euclidean and non-Euclidean geometry, in Sixteen Essays on non-Euclidean Geometry, ed. by A. Papadopoulos (European Mathematical Society Publishing House, Zürich, 2018)

    Google Scholar 

  41. D. Johnson, J.J. Millson, Deformation spaces associated to compact hyperbolic manifolds, in Discrete Groups in Geometry and Analysis (New Haven, Conn., 1984). Progress in Mathematical, vol. 67 (Birkhäuser Boston, Boston, MA, 1987), pp. 48–106

    Google Scholar 

  42. M. Kapovich, Hyperbolic Manifolds and Discrete Groups. Modern Birkhäuser Classics (Birkhäuser Boston, Inc., Boston, MA, 2009). Reprint of the 2001 edition

    Google Scholar 

  43. M. Kapovich, B. Leeb, J. Porti, Some recent results on Anosov representations. Transform. Groups 21(4), 1105–1121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. S.P. Kerckhoff, Earthquakes are analytic. Comment. Math. Helv. 60(1), 17–30 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Kourouniotis, Deformations of hyperbolic structures. Math. Proc. Cambr. Philos. Soc. 98(2), 247–261 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. K. Krasnov, J.-M. Schlenker, Minimal surfaces and particles in 3-manifolds. Geom. Dedicata 126, 187–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Labourie, Anosov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Lafontaine, Modules de structures conformes plates et cohomologie de groupes discrets. C. R. Acad. Sci. Paris Sér. I Math. 297(13), 655–658 (1983)

    MathSciNet  MATH  Google Scholar 

  49. A.M. Li, Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space. Arch. Math. (Basel) 64(6), 534–551 (1995)

    Google Scholar 

  50. P. Majer (https://mathoverflow.net/users/6101/pietromajer), Uniform convergence of convex functions. MathOverflow. https://mathoverflow.net/q/196540 (version: 2015-02-15)

  51. G. Mess, Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. K. Nomizu, T. Sasaki, Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Tracts in Mathematics, vol. 111 (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  53. V.I. Oliker, U. Simon, Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature. J. Reine Angew. Math. 342, 35–65 (1983)

    MathSciNet  MATH  Google Scholar 

  54. A. Papadopoulos, W. Su, On the Finsler structure of Teichmüller’s metric and Thurston’s metric. Expo. Math. 33(1), 30–47 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Papadopoulos, G. Théret, On Teichmüller’s metric and Thurston’s asymmetric metric on Teichmüller space, in Handbook of Teichmüller theory. Vol. I. IRMA Lectures in Mathematics and Theoretical Physics, vol. 11 (European Mathematical Society, Zürich, 2007), pp. 111–204

    Google Scholar 

  56. R.C. Penner, J.L. Harer, Combinatorics of Train Tracks. Annals of Mathematics Studies, vol. 125 (Princeton University Press, Princeton, NJ, 1992)

    Google Scholar 

  57. S. Riolo, A. Seppi, Geometric transition from hyperbolic to anti-de sitter structures in dimension four (2019). arXiv:1908.05112v2 [math.GT]

    Google Scholar 

  58. J.-M. Schlenker, Variétés lorentziennes plates vues comme limites de variétés anti–de Sitter [d’après Danciger, Guéritaud et Kassel]. Astérisque (380, Séminaire Bourbaki. Vol. 2014/2015):Exp. No. 1103, 475–497 (2016)

    Google Scholar 

  59. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 151 (Cambridge University Press, Cambridge, 2014), expanded edition

    Google Scholar 

  60. A. Seppi, Surfaces in constant curvature three-manifolds and the infinitesimal Teichmüller theory. PhD thesis, University of Pavia (2015)

    Google Scholar 

  61. G.A.C. Smith, A short proof of an assertion of thurston concerning convex hulls, ed. by K. Ohshika, A. Papadopoulos, in In the Tradition of Thurston (Springer, Cham, 2020), pp. 255–261

    Google Scholar 

  62. G.A.C. Smith, Global Singularity Theory for the Gauss Curvature Equation. Ensaios Matemáticos [Mathematical Surveys], vol. 28 (Sociedade Brasileira de Matemática, Rio de Janeiro, 2015)

    Google Scholar 

  63. W.P. Thurston, Minimal stretch maps between hyperbolic surfaces. ArXiv Mathematics e-prints, January 1998

    Google Scholar 

  64. A.J. Tromba, Teichmüller theory in Riemannian geometry. Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel, 1992). Lecture notes prepared by Jochen Denzler

    Google Scholar 

  65. C. Walsh, The horoboundary and isometry group of Thurston’s Lipschitz metric, in Handbook of Teichmüller theory. Vol. IV. IRMA Lectures in Mathematics and Theoretical Physics, vol. 19 (European Mathematical Society, Zürich, 2014), pp. 327–353

    Google Scholar 

  66. S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface. Ann. Math. (2) 117(2), 207–234 (1983)

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the referee for her/his careful reading of the manuscript. The present work is also part of the Math Amsud 2014 project n38888QB-GDAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fillastre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbot, T., Fillastre, F. (2020). Quasi-Fuchsian Co-Minkowski Manifolds. In: Ohshika, K., Papadopoulos, A. (eds) In the Tradition of Thurston. Springer, Cham. https://doi.org/10.1007/978-3-030-55928-1_16

Download citation

Publish with us

Policies and ethics