Skip to main content

Physical Concepts Toward Cell–Material Integration

  • Chapter
  • First Online:
Cell-Inspired Materials and Engineering

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 498 Accesses

Abstract

“Integration” of biological cells and materials has been discussed over the past 10–15 years. Several institutions, including iCeMS of Kyoto University, have been trying to achieve this ambitious goal. One of the major problems that is often overlooked is physical roles of interfaces, where cells meet materials. Ample evidence, both experimental and theoretical, has suggested that “interface” is not merely a boundary between two bulk phases but possesses distinct structures and functions under or out of equilibrium. In biological systems, the characteristic length scale ranges from several nm up to sub-μm (called mesoscopic). Unfortunately, the importance of science in mesoscopic length scale has not been well understood/appreciated neither by biologists nor chemists until very recently. For example, “biocompatibility of material” is frequently discussed only in terms of hydrophilicity/hydrophobicity, charge, or chemical functionality of the surface, ignoring the presence of hydration repulsion, long-range van der Waals interaction, and passive and active fluctuation of cells and biomacromolecules. This chapter aims to provide with a comprehensive overview on the basic physical principles “how cells meet materials in mesoscopic space” from the viewpoint of physics, which may help us improve the strategy for cell–material fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardt SL (1979) Rates of diffusion controlled reactions in one, two and three dimensions. Biophys Chem 10:239–243

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka M (2013) Physics of interactions at biological and biomaterial interfaces. Curr Opin Colloid Interface Sci 18:432–439

    Article  CAS  Google Scholar 

  3. Derjaguin BV, Churaev NV (1987) Surface forces. Consultants Bureau, New York, NY

    Book  Google Scholar 

  4. Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663

    Article  CAS  PubMed  Google Scholar 

  5. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  CAS  PubMed  Google Scholar 

  6. Israelachvili JN, Adams GE (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans 74:975–1001

    Article  CAS  Google Scholar 

  7. Parker JL, Christenson HK, Ninham BW (1989) Device for measuring the force and separation between two surfaces down to molecular separations. Rev Sci Instrum 60:3135–3138

    Article  CAS  Google Scholar 

  8. Tanaka M (2006) Polymer-supported membranes: physical models of cell surfaces. MRS Bull 31:513–520

    Article  CAS  Google Scholar 

  9. Sackmann E, Tanaka M (2000) Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 18:58–64

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka M, Wong AP, Rehfeldt F, Tutus M, Kaufmann S (2004) Selective deposition of native cell membranes on biocompatible micropatterns. J Am Chem Soc 126:3257–3260

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka M, Kaufmann S, Nissen J, Hochrein M (2001) Orientation selective immobilization of human erythrocyte membranes on ultrathin cellulose films. Phys Chem Chem Phys 3:4091–4095

    Article  CAS  Google Scholar 

  12. Seitz PC, Reif MD, Konovalov OV, Jordan R, Tanaka M (2009) Modulation of substrate-membrane interactions by linear poly(2-methyl-2-oxazoline) spacers revealed by X-ray reflectivity and ellipsometry. ChemPhysChem 10:2876–2883

    Article  CAS  PubMed  Google Scholar 

  13. Rossetti FF, Schneck E, Fragneto G, Konovalov OV, Tanaka M (2015) Generic role of polymer supports in the fine adjustment of interfacial interactions between solid substrates and model cell membranes. Langmuir 31:4473–4480

    Article  CAS  PubMed  Google Scholar 

  14. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, Cambridge, MA

    Google Scholar 

  15. Rau DC, Parsegian VA (1990) Direct measurement of forces between linear polysaccharides xanthan and schizophyllan. Science 249:1278–1281

    Article  CAS  PubMed  Google Scholar 

  16. Leikin S, Parsegian VA, Rau DC, Rand RP (1993) Hydration forces. Annu Rev Phys Chem 44:369–395

    Article  CAS  PubMed  Google Scholar 

  17. Helfrich W (1978) Steric interaction of fluid membranes in multilayer systems. Zeitschrift für Naturforschung Teil A 33:305–315

    Article  Google Scholar 

  18. Bachmann M, Kleinert H, Pelster A (2001) Fluctuation pressure of a stack of membranes. Phys Rev E 63:051709

    Article  CAS  Google Scholar 

  19. Vrij A (1966) Possible mechanism for spontaneous rupture of thin free liquid films. Discuss Faraday Soc 42:23

    Article  Google Scholar 

  20. Langevin D (1998) Dynamics of surfactant layers. Curr Opin Colloid Interface Sci 3:600–607

    Article  CAS  Google Scholar 

  21. Reiter G et al (1999) Thin film instability induced by long-range forces. Langmuir 15:2551–2558

    Article  CAS  Google Scholar 

  22. Sackmann E, Bruinsma RF (2002) Cell adhesion as wetting transition? Chem Phys Chem 3:262–269

    Article  CAS  PubMed  Google Scholar 

  23. De Gennes PG (1976) Scaling theory of polymer adsorption. J Phys France 37:1445–1452

    Article  Google Scholar 

  24. Alexander S (1977) Polymer adsorption on small spheres. A scaling approach. J Phys France 38:977–981

    Article  CAS  Google Scholar 

  25. Gülcüler Balta GS et al (2019) 3D cellular architecture modulates tyrosine kinase activity, thereby switching CD95-mediated apoptosis to survival. Cell Rep 29:2295–2306.e2296

    Article  PubMed  CAS  Google Scholar 

  26. Brochard-Wyart F, de Gennes PG (1992) Dynamics of partial wetting. Adv Colloid Interf Sci 39:1–11

    Article  CAS  Google Scholar 

  27. Nissen J, Gritsch S, Wiegand G, Rädler J (1999) Wetting of phospholipid membranes on hydrophilic surfaces-concepts towards self-healing membranes. Eur Phys J B 10:335–344

    Article  CAS  Google Scholar 

  28. Hillebrandt H, Wiegand G, Tanaka M, Sackmann E (1999) High electric resistance polymer/lipid composite films on indium-tin-oxide electrodes. Langmuir 15:8451–8459

    Article  CAS  Google Scholar 

  29. Furukawa K, Nakashima H, Kashimura Y, Torimitsu K (2006) Microchannel device using self-spreading lipid bilayer as molecule carrier. Lab Chip 6:1001–1006

    Article  CAS  PubMed  Google Scholar 

  30. Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45:1051–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rieger H et al (2015) Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood 125:383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaindl T et al (2012) Spatio-temporal patterns of pancreatic cancer cells expressing CD44 isoforms on supported membranes displaying hyaluronic acid oligomers arrays. PLoS One 7:e42991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burk AS et al (2015) Quantifying adhesion mechanisms and dynamics of human hematopoietic stem and progenitor cells. Sci Rep 5:9370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Albersdörfer A, Feder T, Sackmann E (1997) Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J 73:245–257

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goennenwein S, Tanaka M, Hu B, Moroder L, Sackmann E (2003) Functional incorporation of Integrins into solid supported membranes on ultrathin films of cellulose: impact on adhesion. Biophys J 85:846–855

    Article  Google Scholar 

  36. Bruinsma R. In: Proc. NATO Adv. Inst. Phys. Biomater. NATO ASI Ser. pp 61–75

    Google Scholar 

  37. Purrucker O et al (2007) Polymer-tethered membranes as quantitative models for the study of integrin-mediated cell adhesion. Soft Matter 3:333–336

    Article  CAS  PubMed  Google Scholar 

  38. Baur B et al (2005) Chemical functionalization of GaN and AlN surfaces. Appl Phys Lett 87:263901

    Article  CAS  Google Scholar 

  39. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  PubMed  Google Scholar 

  40. Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR (2002) Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci 99:14142–14146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van der Schoot BH, Bergveld P (1988) ISFET based enzyme sensors. Biosensors 3:161–186

    Article  Google Scholar 

  42. Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1084–1104

    Article  CAS  PubMed  Google Scholar 

  43. Bergveld P (2003) Thirty years of ISFETOLOGY – what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88:1–20

    Google Scholar 

  44. Fromherz P, Offenhausser A (1991) A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252:1290

    Article  CAS  PubMed  Google Scholar 

  45. Hess LH et al (2011) Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater 23:5045–5049

    Article  CAS  PubMed  Google Scholar 

  46. Steinhoff G et al (2005) Recording of cell action potentials with Al Ga N∕ Ga N field-effect transistors. Appl Phys Lett 86:033901

    Article  CAS  Google Scholar 

  47. Zeck G, Fromherz P (2001) Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proc Natl Acad Sci 98:10457–10462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zeck G, Fromherz P (2003) Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips. Langmuir 19:1580–1585

    Article  CAS  Google Scholar 

  49. Atanasov V et al (2005) Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J 89:1780–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hillebrandt H, Tanaka M, Sackmann E (2002) A novel membrane charge sensor: sensitive detection of surface charge at polymer/lipid composite films on indium tin oxide electrodes. J Phys Chem B 106:477–486

    Article  CAS  Google Scholar 

  51. Schubert T et al (2009) Gallium nitride electrodes for membrane-based electrochemical biosensors. Eur Phys J E 30:233–238

    Article  CAS  PubMed  Google Scholar 

  52. Cornell BA, Braach-Maksvytis V, King L, Osman P (1997) A biosensor that uses ion-channel switches. Nature 387:580

    Article  CAS  PubMed  Google Scholar 

  53. Ross M, Steinem C, Galla H-J, Janshoff A (2001) Visualization of chemical and physical properties of calcium-induced domains in DPPC/DPPS Langmuir−Blodgett layers. Langmuir 17:2437–2445

    Article  CAS  Google Scholar 

  54. Frenkel N et al (2014) High precision, electrochemical detection of reversible binding of recombinant proteins on wide bandgap GaN electrodes functionalized with biomembrane models. Adv Funct Mater 24:4927–4934

    Article  CAS  Google Scholar 

  55. Gassull D, Ulman A, Grunze M, Tanaka M (2008) Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes. J Phys Chem B 112:5736–5741

    Article  CAS  PubMed  Google Scholar 

  56. Tutus M, Purrucker O, Adlkofer A, Eickhoff M, Tanaka M (2005) Electrochemical stabilization of crystalline silicon with aromatic self-assembled monolayers in aqueous electrolytes. Phys Stat Sol A 242:2838–2845

    Article  CAS  Google Scholar 

  57. Adlkofer K, Tanaka M (2001) Stable surface coating of gallium arsenide with octadecylthiol monolayers. Langmuir 17:4267–4273

    Article  CAS  Google Scholar 

  58. Kaindl T et al (2010) Modulation of band bending of gallium arsenide with oriented helical peptide monolayers. J Phys Chem C 114:22677–22683

    Article  CAS  Google Scholar 

  59. Steinhoff G, Purrucker O, Tanaka M, Stutzmann M, Eickhoff M (2003) AlxGa1–xN—a new material system for biosensors. Adv Funct Mater 13:841–846

    Article  CAS  Google Scholar 

  60. Mehlhose S et al (2018) Flexible modulation of electronic band structures of wide band gap GaN semiconductors using bioinspired, nonbiological helical peptides. Adv Funct Mater 28:1704034

    Article  CAS  Google Scholar 

  61. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed 31:153–169

    Article  Google Scholar 

  62. Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  CAS  Google Scholar 

  63. Aizenberg J et al (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  CAS  PubMed  Google Scholar 

  64. Kato T, Sakamoto T, Nishimura T (2010) Macromolecular templating for the formation of inorganic-organic hybrid structures. MRS Bull 35:127–132

    Article  CAS  Google Scholar 

  65. Sugawara A, Ishii T, Kato T (2003) Self-organized calcium carbonate with regular surface-relief structures. Angew Chem 115:5457–5461

    Article  Google Scholar 

  66. Nishimura T, Ito T, Yamamoto Y, Yoshio M, Kato T (2008) Macroscopically ordered polymer/CaCO3 hybrids prepared by using a liquid-crystalline template. Angew Chem Int Ed 47:2800–2803

    Article  CAS  Google Scholar 

  67. Han YJ, Wysocki LM, Thanawala MS, Siegrist T, Aizenberg J (2005) Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions. Angew Chem Int Ed 44:2386–2390

    Article  CAS  Google Scholar 

  68. Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk Shell examined in the hydrated state using Cryo-TEM. J Struct Biol 135:8–17

    Article  CAS  PubMed  Google Scholar 

  69. Weiss IM, Kaufmann S, Heiland B, Tanaka M (2009) Covalent modification of chitin with silk-derivatives acts as an amphiphilic self-organizing template in nacre biomineralisation. J Struct Biol 167:68–75

    Article  CAS  PubMed  Google Scholar 

  70. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  CAS  PubMed  Google Scholar 

  71. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405–3413

    Article  CAS  Google Scholar 

  72. Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78

    Article  CAS  PubMed  Google Scholar 

  73. Nath N, Hyun J, Ma H, Chilkoti A (2004) Surface engineering strategies for control of protein and cell interactions. Surf Sci 570:98–110

    Article  CAS  Google Scholar 

  74. Iwata R et al (2004) Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Biomacromolecules 5:2308–2314

    Article  CAS  PubMed  Google Scholar 

  75. Schlenoff J, Zwitteration B (2014) Coating surfaces with Zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shao Q, Jiang S (2015) Molecular understanding and design of zwitterionic materials. Adv Mater 27:15–26

    Article  CAS  PubMed  Google Scholar 

  77. Van Deenen L (1966) Some structural and dynamic aspects of lipids in biological membranes. Ann N Y Acad Sci 137:717–730

    Article  PubMed  Google Scholar 

  78. Murakami D et al (2013) Spreading and structuring of water on superhydrophilic polyelectrolyte brush surfaces. Langmuir 29:1148–1151

    Article  CAS  PubMed  Google Scholar 

  79. Yamada T, Takahashi N, Tominaga T, Takata, S.-i. & Seto, H. (2017) Dynamical behavior of hydration water molecules between phospholipid membranes. J Phys Chem B 121:8322–8329

    Article  CAS  PubMed  Google Scholar 

  80. Ball P (2017) Water is an active matrix of life for cell and molecular biology. Proc Natl Acad Sci 114:13327–13335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Monzel C et al (2015) Fine adjustment of interfacial potential between pH-responsive hydrogels and cell-sized particles. Langmuir 31:8689–8696

    Article  CAS  PubMed  Google Scholar 

  82. Higaki Y et al (2017) Ion-specific modulation of interfacial interaction potentials between solid substrates and cell-sized particles mediated via Zwitterionic, super-hydrophilic poly (sulfobetaine) brushes. J Phys Chem B 121:1396–1404

    Article  CAS  PubMed  Google Scholar 

  83. Stremmel W et al (2012) Mucosal protection by phosphatidylcholine. Dig Dis 30(suppl 3):85–91

    Article  PubMed  Google Scholar 

  84. Amadei F, Fröhlich B, Stremmel W, Tanaka M (2018) Nonclassical interactions of phosphatidylcholine with mucin protect intestinal surfaces: a microinterferometry study. Langmuir 34:14046–14057

    Article  CAS  PubMed  Google Scholar 

  85. Korytowski A et al (2017) Accumulation of phosphatidylcholine on gut mucosal surface is not dominated by electrostatic interactions. Biochim Biophys Acta Biomembr 1859:959–965

    Article  CAS  PubMed  Google Scholar 

  86. Novikova NN et al (2003) Total reflection X-ray fluorescence study of Langmuir monolayers on water surface. J Appl Crystallogr 36:727–731

    Article  CAS  Google Scholar 

  87. Schneck E et al (2010) Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence. Proc Natl Acad Sci 107:9147–9151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abuillan W et al (2013) Physical interactions of fish protamine and antisepsis peptide drugs with bacterial membranes revealed by combination of specular x-ray reflectivity and grazing-incidence x-ray fluorescence. Phys Rev E 88:012705

    Article  CAS  Google Scholar 

  89. Netz RR (1999) Debye-Huckel theory for interfacial geometries. Phys Rev E 60:3174–3182

    Article  CAS  Google Scholar 

  90. Oliveira RG et al (2009) Physical mechanism of bacterial survival revealed by combined grazing-incidence X-ray scattering and Monte Carlo simulation. Comptes Rendus French Acad Sci 12:209–217

    CAS  Google Scholar 

Download references

Acknowledgments

M.T. is thankful to all the past and current lab members for their enormous efforts and scientific inputs. Especially the following people contributed to the works presented in this chapter: S. Kaufmann, F.F. Rossetti, E. Schneck, W. Abuillan, T. Kaindl, A. Burk, T. Schubert, R.G. Oliveira, H.Y. Yoshikawa, S. Mehlhose, N. Frenkel, B. Fröhlich, and F. Amadei. M.T. is grateful to A.D. Ho, W. Stremmel, J. Sleeman, M. Lanzer (Heidelberg University), O.V. Konovalov (ESRF), B. Demé and G. Fragneto (ILL), S. Kimura (Kyoto University), M. Eickhoff (Bremen), K. Arinaga (Fujitsu), A. Martin-Villanba (DKFZ), D.A. Pink (St. Francis Xavier Univ.), K. Brandenburg (Research Center Borstel), Y. Higaki and A. Takahara (Kyushu Univ.) for long-lasting, highly interdisciplinary collaboration. These works have been supported by the DFG (SPP2171, Germany’s Excellence Strategy, 2082/1-390761711) and JSPS (WPI Program and 19H05719). M.T. thanks Nakatani Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomu Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, M., Yamamoto, A. (2021). Physical Concepts Toward Cell–Material Integration. In: Wang, D.O., Packwood, D. (eds) Cell-Inspired Materials and Engineering. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-55924-3_9

Download citation

Publish with us

Policies and ethics