Skip to main content

Machine Learning and Monte Carlo Methods for Surface-Assisted Molecular Self-Assembly

  • Chapter
  • First Online:
Cell-Inspired Materials and Engineering

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 409 Accesses

Abstract

While molecular self-assembly processes appear widely throughout materials science and cell biology, our ability to simulate them using computational methods remains poor. In this chapter, we summarize our efforts to predict on-surface molecular self-assembly processes using recent machine learning and Monte Carlo methods. Our summary includes introductions to kernelized machine learning methods, Bayesian optimization, and equivalence class Monte Carlo sampling, and should serve as a gateway into the technical literature of the field. We discuss the concepts and shortcomings of each method, and show how they can make predictions which are not possible with conventional computational physics at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418

    Article  CAS  Google Scholar 

  2. Stanchak J (2017) What’s the most important unsolved problem in chemistry? ACS Axial Blog (18 Jan 2017). http://axial.acs.org/2017/01/18/most-important-problem-chemistry/

    Google Scholar 

  3. Roussel TJ et al (2014) Predicting supramolecular self-assembly on reconstructed metal surfaces. Nanoscale 6:7991

    Article  CAS  Google Scholar 

  4. Copie G et al (2015) Surface-induced optimal packing of two-dimensional molecular networks. Phys Rev Lett 114:066101

    Article  CAS  Google Scholar 

  5. Perkett MR, Hagan MF (2014) Using Markov state models to study self-assembly. J Chem Phys 140:214101

    Article  Google Scholar 

  6. Wakayama Y (2016) On-surface molecular nanoarchitectonics: from self-assembly to directly assembly. Jpn J Appl Phys 55:1102AA

    Article  Google Scholar 

  7. Wee A et al (2016) An update from Flatland. ACS Nano 10:8121

    Article  CAS  Google Scholar 

  8. Han P et al (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181

    Article  CAS  Google Scholar 

  9. Han P et al (2015) Self-assembly strategy for fabricating connected graphene nanoribbons. ACS Nano 9:12035

    Article  CAS  Google Scholar 

  10. Xu W, Lee T-W (2016) Recent progress in fabrication techniques of graphene nanoribbons. Mater Horiz 3:186–207

    Article  CAS  Google Scholar 

  11. Mullen K (2014) Recent progress in fabrication techniques of graphene nanoribbons. ACS Nano 8:6531

    Article  Google Scholar 

  12. Giustino F (2014) Materials modelling using density functional theory. Oxford University Press, Oxford

    Google Scholar 

  13. Li X, Packwood DM (2018) Substrate-molecule decoupling induced by self-assembly – implications for graphene nanoribbon fabrication. AIP Adv 8:045117

    Google Scholar 

  14. Gao DZ et al (2015) Efficient parametrization of complex molecule-surface force fields. J Comp Chem 36:1187

    Article  CAS  Google Scholar 

  15. Packwood D et al (2017) Chemical and entropic control on the molecular self-assembly process. Nat Commun 8:14463

    Article  CAS  Google Scholar 

  16. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  17. Klimes J et al (2011) Van der Waals density functionals applied to solids. Phys Rev B 83:195131

    Article  Google Scholar 

  18. Klimes J et al (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22:022201

    Article  Google Scholar 

  19. van der Hamada I (2014) Waals density functional made accurate. Phys Rev B 89:121103

    Article  Google Scholar 

  20. Obersteiner V et al (2017) Structure prediction for surface-induced phases of organic monolayers: overcoming the combinatorial bottleneck. Nano Lett 17:4453

    Article  CAS  Google Scholar 

  21. Wasio N et al (2017) Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays. Nat Commun 8:160577

    Article  Google Scholar 

  22. Murphy K (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge, MA

    Google Scholar 

  23. Rupp M et al (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108:058301

    Article  Google Scholar 

  24. Hansen K et al (2013) Assessment and validation of machine learning methods for predicting molecular atomization energies. J Chem Theory Comput 9:3404

    Article  CAS  Google Scholar 

  25. Robert CL, Casella G (2004) Monte Carlo statistical methods. Springer, New York, NY

    Book  Google Scholar 

  26. Packwood DM, Han P, Hitosugi T (2016) State-space reduction and equivalence class sampling for a molecular self-assembly model. R Soc Open Sci 3:150681

    Article  Google Scholar 

  27. Packwood D, Hitosugi T (2017) Rapid prediction of molecule arrangements on metal surfaces via Bayesian optimization. Appl Phys Express 10:065502

    Article  Google Scholar 

  28. Packwood DM, Hitosugi T (2018) Materials informatics for self-assembly of functionalized organic precursors on metal surfaces. Nat Commun 9:2469

    Article  Google Scholar 

  29. Snoek J, Larochelle H, Adams RP (2012) Advances in neural information processing systems. NIPS Conf 25:2951

    Google Scholar 

  30. Seko A et al (2015) Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Phys Rev Lett 115:205901

    Article  Google Scholar 

  31. Seko A et al (2014) Machine learning with systematic density functional theory calculations: application to melting temperatures of single- and binary-component solids. Phys Rev B 89:054303

    Article  Google Scholar 

  32. Kiyohara S et al (2016) Acceleration of stable interface structure searching using a kriging approach. Jpn J Appl Phys 55:045502

    Article  Google Scholar 

  33. Ueno T et al (2016) COMBO: an efficient Bayesian optimization library for materials science. Mater Discov 4:18

    Article  Google Scholar 

  34. Ju S et al (2017) Designing nanostructures for phonon transport via Bayesian optimization. Phys Rev X 7:021024

    Google Scholar 

  35. Packwood DM (2020) Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning. Sci Rep 10:5868

    Article  CAS  Google Scholar 

  36. Todorovic M et al (2019) Bayesian inference of atomistic structure in functional materials. NPJ Comput Mater 5:35

    Article  Google Scholar 

  37. Packwood DM (2017) Bayesian optimization for materials science. Springer series in the mathematics of materials. Springer, New York, NY

    Google Scholar 

Download references

Acknowledgments

The work reported here has been supported by the following grants: Japan Science and Technology Agency PRESTO “Collaborative Mathematics for Real-World Issues” Grant No. 100167050008, JSPS Kakenhi Shingakujyutsu “Exploration of Nanostrucure-Property Relationships for Materials Innovation” Grant No. 836167050004, JSPS Kakenhi Wakate Kenkyu Grant No. 18K14126, and the World Premier Research Institute Initiative promoted by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) for the Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, and the Advanced Institute for Materials Research (AIMR), Tohoku University. Collaboration with Patrick Han (Tohoku University) and Taro Hitosugi (Tokyo Institute of Technology) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Packwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Packwood, D. (2021). Machine Learning and Monte Carlo Methods for Surface-Assisted Molecular Self-Assembly. In: Wang, D.O., Packwood, D. (eds) Cell-Inspired Materials and Engineering. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-55924-3_3

Download citation

Publish with us

Policies and ethics