Skip to main content

Construction of Multistep Catalytic Systems in Protein Assemblies

  • Chapter
  • First Online:
Cell-Inspired Materials and Engineering

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 402 Accesses

Abstract

The main challenge in the development of artificial bionanoreactors is controllable immobilization of multiple catalytic components within a single scaffold composed of protein assemblies. In this chapter, we describe catalytic systems constructed in interior nanospaces of porous protein crystals and protein cages. Immobilization of multiple molecules or nanoparticles in the interior nanospaces enables complex reactions such as electron transfer reactions, photocatalytic reactions and tandem reactions. These reactions are promoted by precise coimmobilization of the catalytic components with specifically arranged molecular interactions in the internal nanospaces of protein assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M (2018) Bacterial microcompartments. Nat Rev Microbiol 16:277–290. https://doi.org/10.1038/nrmicro.2018.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernhardsgrütter I, Vögeli B, Wagner T, Peter DM, Cortina NS, Kahnt J, Bange G, Engilberge S, Girard E, Riobé F, Maury O, Shima S, Zarzycki J, Erb TJ (2018) The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nat Chem Biol 14:1127–1132. https://doi.org/10.1038/s41589-018-0153-x

  3. Sutter M, Greber B, Aussignargues C, Kerfeld CA (2017) Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science 356:1293–1297. https://doi.org/10.1126/science.aan3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J (2016) Natural supramolecular protein assemblies. Chem Soc Rev 45:24–39. https://doi.org/10.1039/c5cs00157a

  5. Tanaka S, Sawaya MR, Yeates TF (2010) Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 327:81–84. https://doi.org/10.1126/science.1179513

    Article  CAS  PubMed  Google Scholar 

  6. Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261. https://doi.org/10.1126/science.1186090

    Article  CAS  PubMed  Google Scholar 

  7. Crowley CS, Sawaya MR, Bobik TA, Yeates TF (2008) Structure of the PduU shell protein from the Pdu microcompartment of salmonella. Structure 16:1324–1332. https://doi.org/10.1016/j.str.2008.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TF (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938. https://doi.org/10.1126/science.1113397

    Article  CAS  PubMed  Google Scholar 

  9. Cameron JC, Wilson SC, Bernstein SL, Kerfeld CA (2013) Biogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 155:1131–1140. https://doi.org/10.1016/j.cell.2013.10.044

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka S, Sawaya MR, Phillips M, Yeates TF (2009) Insights from multiple structures of the shell proteins from the beta-carboxysome. Protein Sci 18:108–120. https://doi.org/10.1002/pro.14

    Article  CAS  PubMed  Google Scholar 

  11. Yeates TF, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691. https://doi.org/10.1038/nrmicro1913

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TF (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086. https://doi.org/10.1126/science.1151458

    Article  CAS  PubMed  Google Scholar 

  13. Yeates TF, Tsai Y, Tanaka S, Sawaya MR, Kerfeld CA (2007) Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells. Biochem Soc Trans 35:508–511. https://doi.org/10.1042/bst0350508

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe Y, Aiba Y, Ariyasu S, Abe S (2020) Molecular design and regulation of metalloenzyme activities through two novel approaches: ferritin and P450s. Bull Chem Soc Jpn 93:379–392. https://doi.org/10.1246/bcsj.20190305

    Article  CAS  Google Scholar 

  15. Reetz MT (2019) Directed evolution of artificial metalloenzymes: a universal means to tune the selectivity of transition metal catalysts? Acc Chem Res 52:336–344. https://doi.org/10.1021/acs.accounts.8b00582

    Article  CAS  PubMed  Google Scholar 

  16. Yu Y, Hu C, Xia L, Wang JY (2018) Artificial metalloenzyme design with unnatural amino acids and non-native cofactors. ACS Catal 8:1851–1863. https://doi.org/10.1021/acscatal.7b03754

    Article  CAS  Google Scholar 

  17. Matsuo T, Miyake T, Hirota S (2019) Recent developments on creation of artificial metalloenzymes. Tetrahedron Lett 60:151226. https://doi.org/10.1016/j.tetlet.2019.151226

    Article  CAS  Google Scholar 

  18. Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U (2019) Towards the evolution of artificial metalloenzymes-a protein engineer’s perspective. Angew Chem Int Ed 58:4454–4464. https://doi.org/10.1002/anie.201811042

    Article  CAS  Google Scholar 

  19. Roelfes G (2019) LmrR: a privileged scaffold for artificial metalloenzymes. Acc Chem Res 52:545–556. https://doi.org/10.1021/acs.accounts.9b00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oohora K, Onoda A, Hayashi T (2019) Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Acc Chem Res 52:945–954. https://doi.org/10.1021/acs.accounts.8b00676

    Article  CAS  PubMed  Google Scholar 

  21. Mirts EN, Bhagi-Damodaran A, Lu Y (2019) Understanding and modulating metalloenzymes with unnatural amino acids, non-native metal ions, and non-native metallocofactors. Acc Chem Res 52:935–944. https://doi.org/10.1021/acs.accounts.9b00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwizer F, Okamoto Y, Heinisch T, Gu YF, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR (2018) Artificial metalloenzymes: reaction scope and optimization strategies. Chem Rev 118:142–231. https://doi.org/10.1021/acs.chemrev.7b00014

  23. Vázquez-González M, Wang C, Willner I (2020) Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat Catal 3:256–273. https://doi.org/10.1038/s41929-020-0433-1

    Article  CAS  Google Scholar 

  24. Zhang GQ, Quin MB, Schmidt-Dannert C (2018) Self-assembling protein scaffold system for easy in vitro coimmobilization of biocatalytic cascade enzymes. ACS Catal 8:5611–5620. https://doi.org/10.1021/acscatal.8b00986

    Article  CAS  Google Scholar 

  25. Schmidt S, Castiglione K, Kourist R (2018) Overcoming the incompatibility challenge in chemoenzymatic and multi-catalytic cascade reactions. Chem Eur J 24:1755–1768. https://doi.org/10.1002/chem.201703353

    Article  CAS  PubMed  Google Scholar 

  26. Rudroff F, Mihovilovic MD, Groger H, Snajdrova R, Iding H, Bornscheuer UT (2018) Opportunities and challenges for combining chemo- and biocatalysis. Nat Catal 1:12–22. https://doi.org/10.1038/s41929-017-0010-4

    Article  Google Scholar 

  27. Denard CA, Huang H, Bartlett MJ, Lu L, Tan YC, Zhao HM, Hartwig JF (2014) Cooperative tandem catalysis by an organometallic complex and a metalloenzyme. Angew Chem Int Ed 53:465–469. https://doi.org/10.1002/anie.201305778

    Article  CAS  Google Scholar 

  28. Köhler V, Wilson YM, Durrenberger M, Ghislieri D, Churakova E, Quinto T, Knörr L, Häussinger D, Hollmann F, Turner NJ, Ward TR (2013) Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem 5:93–99. https://doi.org/10.1038/Nchem.1498

  29. Morra S, Pordea A (2018) Biocatalyst-artificial metalloenzyme cascade based on alcohol dehydrogenase. Chem Sci 9:9. https://doi.org/10.1039/c8sc02371a

    Article  CAS  Google Scholar 

  30. Maity B, Hishikawa Y, Lu DN, Ueno T (2019) Recent progresses in the accumulation of metal ions into the apo-ferritin cage: experimental and theoretical perspectives. Polyhedron 172:104–111. https://doi.org/10.1016/j.poly.2019.03.048

    Article  CAS  Google Scholar 

  31. Abe S, Maity B, Ueno T (2018) Functionalization of protein crystals with metal ions, complexes and nanoparticles. Curr Opin Chem Biol 43:68–76. https://doi.org/10.1016/j.cbpa.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  32. Abe S, Maity B, Ueno T (2016) Design of a confined environment using protein cages and crystals for the development of biohybrid materials. Chem Commun 52:6496–6512. https://doi.org/10.1039/c6cc01355d

    Article  CAS  Google Scholar 

  33. Cristie-Dayid AS, Chen J, Nowak DB, Bondy AL, Sun K, Park S, Holl MMB, Su M, Marsh ENG (2019) Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. J Am Chem Soc 141:9207–9216. https://doi.org/10.1021/jacs.8b13604

    Article  CAS  Google Scholar 

  34. Aumiller WM, Uchida M, Douglas T (2018) Protein cage assembly across multiple length scales. Chem Soc Rev 47:3433–3469. https://doi.org/10.1039/c7cs00818j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sasaki E, Bohringer D, van de Waterbeemd M, Leibundgut M, Zschoche R, Heck AJR, Ban N, Hilvert D (2017) Structure and assembly of scalable porous protein cages. Nat Commun 8:671. https://doi.org/10.1038/ncomms14663

    Article  Google Scholar 

  36. Liljestrom V, Ora A, Hassinen J, Rekola HT, Nonappa HM, Hynninen V, Joensuu JJ, Ras RHA, Torma P, Ikkala O, Kostiainen MA (2017) Cooperative colloidal self-assembly of metal-protein superlattice wires. Nat Commun 8:671. https://doi.org/10.1038/s41467-017-00697-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo Q, Hou CX, Bai YS, Wang RB, Liu JQ (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116:13571–13632. https://doi.org/10.1021/acs.chemrev.6b00228

    Article  CAS  PubMed  Google Scholar 

  38. Koshiyama T, Kawaba N, Hikage T, Shirai M, Miura Y, Huang CY, Tanaka K, Watanabe Y, Ueno T (2010) Modification of porous protein crystals in development of biohybrid materials. Bioconjug Chem 21:264–269. https://doi.org/10.1021/Bc9003052

    Article  CAS  PubMed  Google Scholar 

  39. Abe S, Tokura Y, Pal R, Komura N, Imamura A, Matsumoto K, Ijiri H, Sanghamitra NJM, Tabe H, Ando H, Kiso M, Mori H, Kitagawa S, Ueno T (2015) Surface functionalization of protein crystals with carbohydrate using site-selective bioconjugation. Chem Lett 44:29–31. https://doi.org/10.1246/cl.140865

    Article  CAS  Google Scholar 

  40. Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A (2016) Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 45:5020–5054. https://doi.org/10.1039/c5cs00923e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hematian S, Garcia-Bosch I, Karlin KD (2015) Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides. Acc Chem Res 48:2462–2474. https://doi.org/10.1021/acs.accounts.5b00265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayashi T, Sano Y, Onoda A (2015) Generation of new artificial metalloproteins by cofactor modification of native hemoproteins. Isr J Chem 55:76–84. https://doi.org/10.1002/ijch.201400123

    Article  CAS  Google Scholar 

  43. Lin YW, Sawyer EB, Wang JY (2013) Rational heme protein design: all roads lead to Rome. Chem Asian J 8:2534–2544. https://doi.org/10.1002/asia.201300291

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe Y, Nakajima H, Ueno T (2007) Reactivities of oxo and peroxo intermediates studied by hemoprotein mutants. Acc Chem Res 40:554–562. https://doi.org/10.1021/ar600046a

    Article  CAS  PubMed  Google Scholar 

  45. Ozaki S, Roach MP, Matsui T, Watanabe Y (2001) Investigations of the roles of the distal heme environment and the proximal heme iron ligand in peroxide activation by heme enzymes via molecular engineering of myoglobin. Acc Chem Res 34:818–825. https://doi.org/10.1021/ar9502590

    Article  CAS  Google Scholar 

  46. Abe S, Atsumi K, Yamashita K, Hirata K, Mori H, Ueno T (2018) Structure of in cell protein crystals containing organometallic complexes. Phys Chem Chem Phys 20:2986–2989. https://doi.org/10.1039/c7cp06651a

    Article  CAS  PubMed  Google Scholar 

  47. Tabe H, Shimoi T, Boudes M, Abe S, Coulibaly F, Kitagawa S, Mori H, Ueno T (2016) Photoactivatable CO release from engineered protein crystals to modulate NF-kappa B activation. Chem Commun 52:4545–4548. https://doi.org/10.1039/c5cc10440h

    Article  CAS  Google Scholar 

  48. Tabe H, Shimoi T, Fujita K, Abe S, Ijiri H, Tsujimoto M, Kuchimaru T, Kizaka-Kondo S, Mori H, Kitagawa S, Ueno T (2015) Design of a CO-releasing extracellular scaffold using in vivo protein crystals. Chem Lett 44:342–344. https://doi.org/10.1246/cl.141035

    Article  CAS  Google Scholar 

  49. Tabe H, Fujita K, Abe S, Tsujimoto M, Kuchimaru T, Kizaka-Kondoh S, Takano M, Kitagawa S, Ueno T (2015) Preparation of a cross-linked porous protein crystal containing Ru carbonyl complexes as a CO-releasing extracellular scaffold. Inorg Chem 54:215–220. https://doi.org/10.1021/ic502159x

    Article  CAS  PubMed  Google Scholar 

  50. Ueno T, Abe S, Koshiyama T, Ohki T, Hikage T, Watanabe Y (2010) Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing RhIII ions as the model surfaces. Chem Eur J 16:2730–2740. https://doi.org/10.1002/chem.200903269

    Article  CAS  PubMed  Google Scholar 

  51. Ueno T, Abe M, Hirata K, Abe S, Suzuki M, Shimizu N, Yamamoto M, Takata M, Watanabe Y (2009) Process of accumulation of metal ions on the interior surface of apo-ferritin: crystal structures of a series of apo-ferritins containing variable quantities of Pd(II) ions. J Am Chem Soc 131:5094–5100. https://doi.org/10.1021/ja806688s

    Article  CAS  PubMed  Google Scholar 

  52. Fujita K, Tanaka Y, Sho T, Ozeki S, Abe S, Hikage T, Kuchimaru T, Kizaka-Kondoh S, Ueno T (2014) Intracellular CO release from composite of ferritin and ruthenium carbonyl complexes. J Am Chem Soc 136:16902–16908. https://doi.org/10.1021/ja508938f

    Article  CAS  PubMed  Google Scholar 

  53. Fujita K, Tanaka Y, Abe S, Ueno T (2016) A photoactive carbon-monoxide-releasing protein cage for dose-regulated delivery in living cells. Angew Chem Inter Ed 55:1056–1060. https://doi.org/10.1002/anie.201506738

    Article  CAS  Google Scholar 

  54. Wang Z, Takezawa Y, Aoyagi H, Abe S, Hikage T, Watanabe Y, Kitagawa S, Ueno T (2011) Definite coordination arrangement of organometallic palladium complexes accumulated on the designed interior surface of apo-ferritin. Chem Commun 47:170–172. https://doi.org/10.1039/c0cc02221g

    Article  CAS  Google Scholar 

  55. Takezawa Y, Bockmann P, Sugi N, Wang ZY, Abe S, Murakami T, Hikage T, Erker G, Watanabe Y, Kitagawa S, Ueno T (2011) Incorporation of organometallic Ru complexes into apo-ferritin cage. Dalton Trans 40:2190–2195. https://doi.org/10.1039/c0dt00955e

    Article  CAS  PubMed  Google Scholar 

  56. Abe S, Hikage T, Watanabe Y, Kitagawa S, Ueno T (2010) Mechanism of accumulation and incorporation of organometallic Pd complexes into the protein nanocage of apo-ferritin. Inorg Chem 49:6967–6973. https://doi.org/10.1021/ic1003758

    Article  CAS  PubMed  Google Scholar 

  57. Abe S, Tsujimoto M, Yoneda K, Ohba M, Hikage T, Takano M, Kitagawa S, Ueno T (2012) Porous protein crystals as reaction vessels for controlling magnetic properties of nanoparticles. Small 8:1314–1319. https://doi.org/10.1002/smll.201101866

    Article  CAS  PubMed  Google Scholar 

  58. Künzle M, Lach M, Beck T (2018) Crystalline protein scaffolds as a defined environment for the synthesis of bioinorganic materials. Dalton Trans 47:10382–10387. https://doi.org/10.1039/c8dt01192c

  59. Guli MN, Li M, Hu Z, Yao JX, Mann S (2015) Fabrication of photoluminescent hybrid protein crystals of lysozyme and bromophenol blue. J Mater Sci 50:7026–7030. https://doi.org/10.1007/s10853-015-9255-y

    Article  CAS  Google Scholar 

  60. Muskens OL, England MW, Danos L, Li M, Mann S (2013) Plasmonic response of Ag- and Au-infiltrated cross-linked lysozyme crystals. Adv Funct Mater 23:281–290. https://doi.org/10.1002/adfm.201201718

    Article  CAS  Google Scholar 

  61. Guli M, Lambert EM, Li M, Mann S (2010) Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals. Angew Chem Int Ed 49:520–523. https://doi.org/10.1002/anie.200905070

    Article  CAS  Google Scholar 

  62. Suzuki M, Abe M, Ueno T, Abe S, Goto T, Toda Y, Akita T, Yamadae Y, Watanabe Y (2009) Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin. Chem Commun 2009:4871–4873. https://doi.org/10.1039/b908742g

    Article  CAS  Google Scholar 

  63. Kang S, Jolley CC, Liepold LO, Young M, Douglas T (2009) From metal binding to nanoparticle formation: monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry. Angew Chem Inter Ed 48:4772–4776. https://doi.org/10.1002/anie.200900437

    Article  CAS  Google Scholar 

  64. Klem MT, Mosolf J, Young M, Douglas T (2008) Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg Chem 47:2237–2239. https://doi.org/10.1021/ic701740q

    Article  PubMed  Google Scholar 

  65. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042. https://doi.org/10.1002/adma.200601168

    Article  CAS  Google Scholar 

  66. Klem MT, Willits D, Solis DJ, Belcher AM, Young M, Douglas T (2005) Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles. Adv Funct Mater 15:1489–1494. https://doi.org/10.1002/adfm.200400453

    Article  CAS  Google Scholar 

  67. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 43:2527–2530. https://doi.org/10.1002/anie.200353436

    Article  CAS  Google Scholar 

  68. Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84:187–194. https://doi.org/10.1002/bit.10748

    Article  CAS  PubMed  Google Scholar 

  69. Allen M, Willits D, Young M, Douglas T (2003) Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg Chem 42:6300–6305. https://doi.org/10.1021/ic0343657

    Article  CAS  PubMed  Google Scholar 

  70. Allen M, Willits D, Mosolf J, Young M, Douglas T (2002) Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv Mater 14:1562–1565. https://doi.org/10.1002/1521-4095(20021104)14:21<1562::Aid-Adma1562>3.0.Co;2-D

    Article  CAS  Google Scholar 

  71. Maity B, Abe S, Ueno T (2017) Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Nat Commun 8:14820. https://doi.org/10.1038/ncomms14820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koshiyama T, Shirai M, Hikage T, Tabe H, Tanaka K, Kitagawa S, Ueno T (2011) Post-crystal engineering of zinc-substituted myoglobin to construct a long-lived photoinduced charge-separation system. Angew Chem Inter Ed 50:4849–4852. https://doi.org/10.1002/anie.201008004

    Article  CAS  Google Scholar 

  73. Wei H, Lu Y (2012) Catalysis of gold nanoparticles within lysozyme single crystals. Chem Asian J 7:680–683. https://doi.org/10.1002/asia.201100942

    Article  CAS  PubMed  Google Scholar 

  74. Engstrom K, Johnston EV, Verho O, Gustafson KPJ, Shakeri M, Tai CW, Backvall JE (2013) Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme. Angew Chem Int Ed 52:14006–14010. https://doi.org/10.1002/anie.201306487

    Article  CAS  Google Scholar 

  75. Liang M, Wang LB, Liu X, Qi W, Su RX, Huang RL, Yu YJ, He ZM (2013) Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts. Nanotechnology 24:245601. https://doi.org/10.1088/0957-4484/24/24/245601

  76. Liang M, Wang LB, Su RX, Qi W, Wang MF, Yu YJ, He ZM (2013) Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Cat Sci Technol 3:1910–1914. https://doi.org/10.1039/c3cy00157a

    Article  CAS  Google Scholar 

  77. Liang M, Su RX, Qi W, Yu YJ, Wang LB (2014) Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49:1639–1647. https://doi.org/10.1007/s10853-013-7847-y

    Article  CAS  Google Scholar 

  78. Liu MY, Wang LB, Huang RL, Yu YJ, Su RX, Qi W, He ZM (2016) Superior catalytic performance of gold nanoparticles within small cross-linked lysozyme crystals. Langmuir 32:10895–10904. https://doi.org/10.1021/acs.langmuir.6b02544

    Article  CAS  PubMed  Google Scholar 

  79. Tabe H, Abe S, Hikage T, Kitagawa S, Ueno T (2014) Porous protein crystals as catalytic vessels for organometallic complexes. Chem Asian J 9:1373–1378. https://doi.org/10.1002/asia.201301347

    Article  CAS  PubMed  Google Scholar 

  80. Lopez S, Rondot L, Lepretre C, Marchi-Delapierre C, Menage S, Cavazza C (2017) Cross-linked artificial enzyme crystals as heterogeneous catalysts for oxidation reactions. J Am Chem Soc 139:17994–18002. https://doi.org/10.1021/jacs.7b09343

    Article  CAS  PubMed  Google Scholar 

  81. Cavazza C, Bochot C, Rousselot-Pailley P, Carpentier P, Cherrier MV, Martin L, Marchi-Delapierre C, Fontecilla-Camps JC, Menage S (2010) Crystallographic snapshots of the reaction of aromatic C-H with O2 catalysed by a protein-bound iron complex. Nat Chem 2:1069–1076. https://doi.org/10.1038/Nchem.841

    Article  CAS  PubMed  Google Scholar 

  82. Tabe H, Takahashi H, Shimoi T, Abe S, Ueno T, Yamada Y (2018) Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals. Appl Catal B 237:1124–1129. https://doi.org/10.1016/j.apcatb.2018.01.046

    Article  CAS  Google Scholar 

  83. Chakraborti S, Lin TY, Glatt S, Heddle JG (2020) Enzyme encapsulation by protein cages. RSC Adv 10:13293–13301. https://doi.org/10.1039/c9ra10983h

    Article  CAS  Google Scholar 

  84. Uchida M, McCoy K, Fukuto M, Yang L, Yoshimura H, Miettinen HM, LaFrance B, Patterson DP, Schwarz B, Karty JA, Prevelige PE, Lee B, Douglas T (2018) Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano 12:942–953. https://doi.org/10.1021/acsnano.7b06049

    Article  CAS  PubMed  Google Scholar 

  85. McCoy K, Uchida M, Lee B, Douglas T (2018) Templated assembly of a functional ordered protein macromolecular framework from P22 virus-like particles. ACS Nano 12:3541–3550. https://doi.org/10.1021/acsnano.8b00528

    Article  CAS  PubMed  Google Scholar 

  86. McCoy K, Selivanovitch E, Luque D, Lee B, Edwards E, Castón JR, Douglas T (2018) Cargo retention inside P22 virus-like particles. Biomacromolecules 19:3738–3746. https://doi.org/10.1021/acs.biomac.8b00867

  87. Brasch M, Putri RM, de Ruiter MV, Luque D, Koay MST, Castón JR, Cornelissen JJLM (2017) Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J Am Chem Soc 139:1512–1519. https://doi.org/10.1021/jacs.6b10948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giessen TW, Silver PA (2016) A catalytic nanoreactor based on in vivo encapsulation of multiple enzymes in an engineered protein nanocompartment. Chembiochem 17:1931–1935. https://doi.org/10.1002/cbic.201600431

    Article  CAS  PubMed  Google Scholar 

  89. Frey R, Mantri S, Rocca M, Hilvert D (2016) Bottom-up construction of a primordial carboxysome mimic. J Am Chem Soc 138:10072–10075. https://doi.org/10.1021/jacs.6b04744

    Article  CAS  PubMed  Google Scholar 

  90. Azuma Y, Zschoche R, Tinzl M, Hilvert D (2016) Quantitative packaging of active enzymes into a protein cage. Angew Chem Int Ed 55:1531–1534. https://doi.org/10.1002/anie.201508414

    Article  CAS  Google Scholar 

  91. Patterson DP, Schwarz B, Waters RS, Gedeon T, Douglas T (2014) Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem Biol 9:359–365. https://doi.org/10.1021/cb4006529

    Article  CAS  PubMed  Google Scholar 

  92. Maity B, Fukumori K, Abe S, Ueno T (2016) Immobilization of two organometallic complexes into a single cage to construct protein-based microcompartments. Chem Commun 52:5463–5466. https://doi.org/10.1039/c6cc00679e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabe, H., Ueno, T. (2021). Construction of Multistep Catalytic Systems in Protein Assemblies. In: Wang, D.O., Packwood, D. (eds) Cell-Inspired Materials and Engineering. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-55924-3_2

Download citation

Publish with us

Policies and ethics