Skip to main content

Non-linear Control of Aerial Manipulator Robots Based on Numerical Methods

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

This work proposes a kinematic modelling and a non-linear kinematic controller for an autonomous aerial mobile manipulator robot that generates velocity commands for trajectory tracking problem. The kinematic modelling is considered using a hexarotor system and robotic arm. The stability and robustness of the entire control system are tested by this method. Finally, the experiment results are presented and discussed, and validate the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgarten, S., Jacobs, T., Graf, B.: The robotic service assistant-relieving the nursing staff of workload. In: 50th International Symposium on Robotics, ISR 2018, pp. 1–4. VDE, June 2018

    Google Scholar 

  2. Triebel, R., et al.: SPENCER: a socially aware service robot for passenger guidance and help in busy airports. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 607–622. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27702-8_40

    Chapter  Google Scholar 

  3. Cesta, A., Cortellessa, G., Orlandini, A., Sorrentino, A., Umbrico, A.: A semantic representation of sensor data to promote proactivity in home assistive robotics. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2018. AISC, vol. 868, pp. 750–769. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01054-6_53

    Chapter  Google Scholar 

  4. Mendes, M., Coimbra, A.P., Crisóstomo, M.M., Cruz, M.: Vision-based collision avoidance for service robot. In: Ao, S.-I., Gelman, L., Kim, H.K. (eds.) WCE 2017, pp. 233–248. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0746-1_18

    Chapter  Google Scholar 

  5. Guerrero-Higueras, Á.M., Rodríguez-Lera, F.J., Martín-Rico, F., Balsa-Comerón, J., Matellán-Olivera, V.: Accountability in mobile service robots. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M.P., Iglesias Martínez, J.A., Ledezma Espino, A. (eds.) WAF 2018. AISC, vol. 855, pp. 242–254. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99885-5_17

    Chapter  Google Scholar 

  6. Ortiz, J.S., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_11

    Chapter  Google Scholar 

  7. Varela-Aldás, J., Andaluz, V.H., Chicaiza, F.A.: Modelling and control of a mobile manipulator for trajectory tracking. In: 2018 International Conference on Information Systems and Computer Science. INCISCOS, pp. 69–74. IEEE, November 2018

    Google Scholar 

  8. Škorput, P., Mandžuka, S., Gregurić, M., Vrančić, M.T.: Applying unmanned aerial vehicles (UAV) in traffic investigation process. In: Karabegović, I. (ed.) NT 2019. LNNS, vol. 76, pp. 401–405. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18072-0_46

    Chapter  Google Scholar 

  9. Bartelds, T., Capra, A., Hamaza, S., Stramigioli, S., Fumagalli, M.: Compliant aerial manipulators: toward a new generation of aerial robotic workers. IEEE Robot. Autom. Lett. 1(1), 477–483 (2016)

    Article  Google Scholar 

  10. Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_66

    Chapter  Google Scholar 

  11. Suárez, A., Sanchez-Cuevas, P., Fernandez, M., Perez, M., Heredia, G., Ollero, A.: Lightweight and compliant long reach aerial manipulator for inspection operations. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6746–6752. IEEE, October 2018

    Google Scholar 

  12. Tognon, M., Franchi, A.: Dynamics, control, and estimation for aerial robots tethered by cables or bars. IEEE Trans. Robot. 33(4), 834–845 (2017)

    Article  Google Scholar 

  13. Molina, M.F., Ortiz, J.S.: Coordinated and cooperative control of heterogeneous mobile manipulators. In: Ge, S.S., et al. (eds.) ICSR 2018. LNCS (LNAI), vol. 11357, pp. 483–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05204-1_47

    Chapter  Google Scholar 

  14. Andaluz, V.H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43

    Chapter  Google Scholar 

  15. Rajappa, S., Ryll, M., Bülthoff, H.H., Franchi, A.: Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4006–4013. IEEE, May 2015

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Corporación Ecuatoria-na para el Desarrollo de la Investigación and Academia CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XIII-2019-08; Sistema colaborativo de robots aéreos para manejar cargas con un consumo óptimo de recursos; also to Universidad de las Fuerzas Armadas ESPE, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, Universidad tecnológica Indoamérica, Universidad internacional de Ecuador, Universidad central de Venezuela, and Grupo de Investigación ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David F. Grijalva , Jaime A. Alegría , Víctor H. Andaluz or Cesar Naranjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grijalva, D.F., Alegría, J.A., Andaluz, V.H., Naranjo, C. (2020). Non-linear Control of Aerial Manipulator Robots Based on Numerical Methods. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics