Skip to main content

ConMerge – Arbitration of Constraint-Based Knowledge Bases

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

Due to the increasing need to individualize mass products, product configurators are becoming more and more a manifest in the environment of business to customer retailers. Furthermore, technology-driven companies try to formalize expert knowledge to maintain their most valuable asset – their technological know-how. Consequently, insulated and diversified knowledge bases are created leading to complex challenges whenever knowledge needs to be consolidated. In this paper, we present the ConMerge-Algorithm which can integrate two constraint-based knowledge bases by applying redundancy detection and conflict detection. Based on detected conflicts, our algorithm applies resolution strategies and assures consistency of the resulting knowledge bases. Furthermore, the user can choose the operation mode of the algorithm: keeping all configuration solutions of each individual input knowledge base or only solutions which are valid in both original knowledge bases. With this method of knowledge base arbitration, the ability to consolidating distributed product configuration knowledge bases is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McDermott, J.: R1: a rule-based configurator of computer systems. Artif. Intell. 19(1), 39–88 (1982)

    Article  Google Scholar 

  2. Marcus, S., Stout, J., McDermott, J.: VT: an expert elevator designer that uses knowledge-based backtracking. AI Mag. 8(4), 41–58 (1987)

    Google Scholar 

  3. Pine Il, J.: Mass Customization: The New Frontier in Business Competition. Harvard Business School, Massachusetts, Boston (1992)

    Google Scholar 

  4. Uta, M., Felfernig, A.: Towards knowledge infrastructure for highly variant voltage transmission systems. In: Proceedings of the 20th Configuration Workshop, Graz, Austria, pp. 109–118 (2018)

    Google Scholar 

  5. Revesz, P. Z.: On the semantics of theory change: arbitration between old and new information. In: Proceedings of the Twelfth ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS-93), pp. 71–82 (1993)

    Google Scholar 

  6. Liberatore, P., Schaerf, F.: Arbitration (or how to merge knowledgebases). IEEE Trans. Knowl. Data Eng. 10(1), 76–90 (1998)

    Article  Google Scholar 

  7. Libaratore, P.: Merging locally correct knowledgebases: a preliminary report. eprint (2002). arXiv:cs/0212053

  8. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Logic 50, 510–530 (1985)

    Article  MathSciNet  Google Scholar 

  9. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford Books MIT Press, Cambridge, MA (1988)

    MATH  Google Scholar 

  10. Hong-Hai, D.: Schema matching and mapping-based data integration, Leipzig (2017)

    Google Scholar 

  11. Christensen, P.: Data Matching. Springer, Heidelberg, Germany (2012)

    Book  Google Scholar 

  12. Felfernig, A., Uta, M., Schenner, G., Spöcklberger, J.: Consistency-based merging of variability models. In: Proceedings of the 21st Configuration Workshop, Hamburg, (2019)

    Google Scholar 

  13. Hotz, L., Felfernig, A., Stumptner, M., Ryaboken, A., Bagley, C., Wolter, K.: Configuration knowledge representation and reasoning. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.) Knowledge-Based configuration – From Research to BusinessCases. Morgan Kaufmann Publishers, Waltham, MA, pp. 41–72 (chapter 6) (2014)

    Google Scholar 

  14. Benavides, D., Ruiz-Cortes, A., Trinidad, P.: Automated reasoning on feature models. Comput. Sci. 3520, 491–503 (2005)

    Google Scholar 

  15. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC – LS2N CNRS UMR 6241, COSLING S.A.S (2017). http://www.choco-solver.org

  16. Schubert, M., Felfernig, A., Mandl, M.: FastXplain: conflict detection for constraint-based recommendation problems. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS (LNAI), vol. 6096, pp. 621–630. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13022-9_62

    Chapter  Google Scholar 

  17. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  18. Felfernig, A., Reiterer, S., Ninaus, G., Balzek, P.: Redundancy detection in configuration knowledge. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.) Knowledge-Based configuration – From Research to BusinessCases. Morgan Kaufmann Publishers, Waltham, MA, pp. 157–166 (chapter 12) (2014)

    Google Scholar 

  19. Felfernig, A. Zehentner, C., Blazek, P.: CoreDiag: eliminating redundancy in constraint sets. In: 22nd International Workshop on Principles of Diagnosis (DX’2011), Murnau, Germany, pp. 219–224 (2011)

    Google Scholar 

  20. Felfernig, A., Reinfrank, F., Ninaus, G., Jeran, M.: Conflict detection and diagnosis in configuration. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.) Knowledge-Based configuration – From Research to BusinessCases. Morgan Kaufmann Publishers, Waltham, MA, pp. 157–166 (chapter 7) (2014)

    Google Scholar 

  21. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constraint problems. In: McGuinness, D.L., Ferguson, G. (eds.) 19th International Conferene on Artificial Intelligence (AAAI’04), pp. 167–172. AAAI Press, San Jose (2004)

    Google Scholar 

  22. Bayoudhi, L., Sassi, N., Jaziri, W.: Efficient management and storage of a multiversion OWL 2 DL domain ontology. Expert Syst. 36(2), e12355 (2019)

    Article  Google Scholar 

  23. Jaziri, W., Bayoudhi, L., Sassi, N.: A preventive approach for consistent OWL 2 DL ontology versions. Int. J. Semantic Web Inf. Syst. 15(1), 76–101 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Uta or Alexander Felfernig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uta, M., Felfernig, A. (2020). ConMerge – Arbitration of Constraint-Based Knowledge Bases. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics