Skip to main content

Monopole Operators and Their Symmetries in QED3-Gross–Neveu Models

  • Conference paper
  • First Online:
Quantum Theory and Symmetries

Abstract

Monopole operators are topological disorder operators in 2 + 1 dimensional compact gauge field theories appearing notably in quantum magnets with fractionalized excitations. For example, their proliferation in a spin-1/2 kagome Heisenberg antiferromagnet triggers a quantum phase transition from a Dirac spin liquid phase to an antiferromagnet. The quantum critical point (QCP) for this transition is described by a conformal field theory: Compact quantum electrodynamics (QED3) with a fermionic self-interaction, a type of QED3-Gross–Neveu model. We obtain the scaling dimensions of monopole operators at the QCP using a state-operator correspondence and a large-N f expansion, where 2N f is the number of fermion flavors. We characterize the hierarchy of monopole operators at this \( \operatorname {\mathrm {SU}}(2) \times \operatorname {\mathrm {SU}}(N_f)\) symmetric QCP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In vector notation using spherical coordinates on Euclidean spacetime , it would be written as \(A^q_\mu = q(1-\cos \theta )/(r \sin \theta ) \delta _\mu ^{\phi }\).

  2. 2.

    Divergences in the gap equation are treated with a Zeta regularization.

  3. 3.

    Divergences in the scaling dimension and the related gap equation are treated with a zeta function regularization. It is important to keep the same regularization scheme that was used to determine the critical effective action in the non-compact theory (7).

  4. 4.

    Note that contrary to other transitions described in Sect. 1, here the symmetric mass generates a Chern–Simons term which prevents monopole proliferation.

References

  1. A.M. Polyakov, Compact gauge fields and the infrared catastrophe. Phys. Lett. B 59, 82–84 (1975)

    Article  ADS  Google Scholar 

  2. A.M. Polyakov, Quark confinement and topology of gauge theories. Nuclear Phys. B 120, 429–458 (1977)

    Article  ADS  Google Scholar 

  3. V. Borokhov, A. Kapustin, X. Wu, Topological disorder operators in three-dimensional conformal field theory. J. High Energy Phys. 2002, 049 (2002)

    Article  MathSciNet  Google Scholar 

  4. M.A. Metlitski, M. Hermele, T. Senthil, M.P.A. Fisher, Monopoles in model via the state-operator correspondence. Phys. Rev. B 78, 214418 (2008)

    Google Scholar 

  5. Y. Ran, M. Hermele, P.A. Lee, X.-G. Wen, Projected-wave-function study of the spin-1∕2 heisenberg model on the kagome lattice. Phys. Rev. Lett. 98, 117205 (2007)

    Article  ADS  Google Scholar 

  6. P. Sindzingre, C. Lhuillier, Low-energy excitations of the kagome antiferromagnet and the spin-gap issue. Europhys. Lett. 88, 27009 (2009)

    Article  ADS  Google Scholar 

  7. Y. Iqbal, F. Becca, S. Sorella, D. Poilblanc, Gapless spin-liquid phase in the kagome spin-1∕2 Heisenberg antiferromagnet. Phys. Rev. B 87, 060405 (2013)

    Article  ADS  Google Scholar 

  8. Y. Iqbal, D. Poilblanc, F. Becca, Spin-1∕2 Heisenberg J 1J 2 antiferromagnet on the kagome lattice. Phys. Rev. B 91, 020402 (2015)

    Article  ADS  Google Scholar 

  9. Y.-C. He, M.P. Zaletel, M. Oshikawa, F. Pollmann, Signatures of Dirac Cones in a DMRG study of the Kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017)

    Google Scholar 

  10. W. Zhu, X. Chen, Y.-C. He, W. Witczak-Krempa, Entanglement signatures of emergent Dirac fermions: Kagome spin liquid and quantum criticality. Sci. Adv. 4(11), eaat5535 (2018)

    Google Scholar 

  11. S.S. Pufu, Anomalous dimensions of monopole operators in three-dimensional quantum electrodynamics. Phys. Rev. D 89, 065016 (2014)

    Article  ADS  Google Scholar 

  12. X.Y. Xu, Y. Qi, L. Zhang, F.F. Assaad, C. Xu, Z.Y. Meng, Monte Carlo study of lattice compact quantum electrodynamics with fermionic matter: the parent state of quantum phases. Phys. Rev. X 9, 021022 (2019)

    Google Scholar 

  13. X.-Y. Song, C. Wang, A. Vishwanath, Y.-C. He, Unifying description of competing orders in two-dimensional quantum magnets. Nat. Commun. 10(1), 4254 (2019)

    Google Scholar 

  14. M.F. Atiyah, I.M. Singer, The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc. 69(3), 422–433 (1963)

    Article  MathSciNet  Google Scholar 

  15. M. Hermele, Y. Ran, P.A. Lee, X.-G. Wen, Properties of an algebraic spin liquid on the kagome lattice. Phys. Rev. B 77, 224413 (2008)

    Article  ADS  Google Scholar 

  16. Y.-M. Lu, G.Y. Cho, A. Vishwanath, Unification of bosonic and fermionic theories of spin liquids on the kagome lattice. Phys. Rev. B 96, 205150 (2017)

    Article  ADS  Google Scholar 

  17. T.T. Wu, C.N. Yang, Dirac monopole without strings: monopole harmonics. Nuclear Phys. B 107(3), 365–380 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  18. É. Dupuis, M.B. Paranjape, W. Witczak-Krempa, Transition from a Dirac spin liquid to an antiferromagnet: monopoles in a QED3-Gross-Neveu theory. Phys. Rev. B 100, 094443 (2019)

    Article  ADS  Google Scholar 

  19. S.M. Chester, L.V. Iliesiu, M. Mezei, S.S. Pufu, Monopole operators in U(1) Chern-Simons-matter theories. J. High Energy Phys. 2018, 157 (2018)

    Article  MathSciNet  Google Scholar 

  20. C. Wang, A. Nahum, M.A. Metlitski, C. Xu, T. Senthil, Deconfined quantum critical points: symmetries and dualities. Phys. Rev. X 7, 031051 (2017)

    Google Scholar 

  21. C. Itzykson, M. Nauenberg, Unitary groups: representations and decompositions. Rev. Mod. Phys. 38, 95 (1966)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Tarun Grover, Joseph Maciejko, David Poland, Zi Yang Meng and Chong Wang for the interesting discussions and useful observations on our work during the symposium. We also thank Jaume Gomis and Sergueï Tchoumakov for useful discussions. É.D. was funded by an Alexander Graham Bell CGS from NSERC. M.B.P. was funded by a Discovery Grant from NSERC. W.W.-K. was funded by a Discovery Grant from NSERC, a Canada Research Chair, a grant from the Fondation Courtois, and a “Établissement de nouveaux chercheurs et de nouvelles chercheuses universitaires” grant from FRQNT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Dupuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dupuis, É., Paranjape, M.B., Witczak-Krempa, W. (2021). Monopole Operators and Their Symmetries in QED3-Gross–Neveu Models. In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_31

Download citation

Publish with us

Policies and ethics