Skip to main content

Howe Duality and Algebras of the Askey–Wilson Type: An Overview

  • 828 Accesses

Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

The Askey–Wilson algebra and its relatives such as the Racah and Bannai–Ito algebras were initially introduced in connection with the eponym orthogonal polynomials. They have since proved ubiquitous. In particular they admit presentations as commutants that are related through Howe duality. This paper surveys these results.

Keywords

  • Howe duality
  • Racah
  • Bannai–Ito and Askey–Wilson algebras
  • Commutants
  • Reductive dual pairs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55777-5_21
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55777-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  1. D.J. Rowe, M.J. Carvalho, J. Repka, Dual pairing of symmetry groups and dynamical groups in physics. Rev. Mod. Phys. 84, 711 (2012)

    CrossRef  ADS  Google Scholar 

  2. V.X. Genest, L. Vinet, A. Zhedanov, The Racah algebra and superintegrable models. J. Phys. Conf. Ser. 512, 012011 (2014)

    CrossRef  Google Scholar 

  3. J. Gaboriaud, L. Vinet, S. Vinet, A. Zhedanov, The Racah algebra as a commutant and Howe duality. J. Phys. A Math. Theor. 51, 50LT01 (2018)

    Google Scholar 

  4. H. De Bie, V.X. Genest, W. van de Vijver, L. Vinet, A higher rank Racah algebra and the Laplace-Dunkl operator. J. Phys. A Math. Theor. 51, 025203 (2017)

    CrossRef  MathSciNet  Google Scholar 

  5. J. Gaboriaud, L. Vinet, S. Vinet, A. Zhedanov, The generalized Racah algebra as a commutant. J. Phys. Conf. Ser. 1194, 012034 (2019)

    CrossRef  Google Scholar 

  6. L. Frappat, J. Gaboriaud, L. Vinet, S. Vinet, A. Zhedanov, The Higgs and Hahn algebras from a Howe duality perspective. Phys. Lett. A 383, 1531–1535 (2019)

    CrossRef  ADS  MathSciNet  Google Scholar 

  7. H. De Bie, V.X. Genest, S. Tsujimoto, L. Vinet, A. Zhedanov, The Bannai–Ito algebra and some applications. J. Phys. Conf. Ser. 597, 012001 (2015)

    CrossRef  Google Scholar 

  8. J. Gaboriaud, L. Vinet, S. Vinet, A. Zhedanov, The dual pair , the Dirac equation and the Bannai–Ito algebra. Nucl. Phys. B 937, 226–239 (2018)

    Google Scholar 

  9. H. De Bie, V.X. Genest, L. Vinet, The Dirac-Dunkl operator and a higher rank Bannai-Ito algebra. Adv. Math. 5, 390–414 (2016)

    Google Scholar 

  10. L. Frappat, J. Gaboriaud, E. Ragoucy, L. Vinet, The dual pair , q-oscillators and the higher rank Askey–Wilson algebra AW(n). J. Math. Phys. 61, 041701 (2020). https://doi.org/10.1063/1.5124251

  11. H. De Bie, H. De Clerq, W. van de Vijver, The higher rank q-deformed Bannai–Ito and Askey–Wilson algebra. Commun. Math. Phys. 374(1), 277 (2020)

    Google Scholar 

  12. L. Frappat, J. Gaboriaud, E. Ragoucy, L. Vinet, The q-Higgs and Askey–Wilson algebras. Nucl. Phys. B 944, 114632 (2019)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Luc Frappat, Eric Ragoucy, and Alexei Zhedanov for collaborations that led to the results reviewed here. JG holds an Alexander-Graham-Bell Scholarship from the Natural Science and Engineering Research Council (NSERC) of Canada. LV gratefully acknowledges his support from NSERC through a Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Gaboriaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gaboriaud, J., Vinet, L., Vinet, S. (2021). Howe Duality and Algebras of the Askey–Wilson Type: An Overview. In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_21

Download citation