Abstract
We conjecture the existence of an embedding of the Racah algebra into the universal enveloping algebra of . Evidence of this conjecture is offered by realizing both algebras using differential operators and giving an embedding in this realization.
Keywords
- Racah algebra
- Embedding
- Lie algebra
This is a preview of subscription content, access via your institution.
Buying options
References
N. Crampé, L. Poulain d’Andecy, L. Vinet, Temperley-Lieb, Brauer and Racah algebras and other centralizers of su(2). Trans. Amer. Math. Soc. 373(7), 4907–4932 (2020)
N. Crampé, W. van de Vijver, L. Vinet, Racah problems for the oscillator algebra, the Lie algebra
and multivariate Krawtchouk polynomials (2019). arXiv:1909.12643, 28 pages
H. De Bie, W. van de Vijver, A discrete realization of the higher rank Racah algebra. Constr. Approx. 52, 1–29 (2020). https://doi.org/10.1007/s00365-019-09475-0
H. De Bie, V.X. Genest, W. van de Vijver, L. Vinet, A higher rank Racah algebra and the
Laplace-Dunkl operator. J. Phys. A Math. Theor. 51, 025203 (20 pp.) (2018)
H. De Bie, P. Iliev, L. Vinet, Bargmann and Barut-Giradello models for the Racah algebra. J. Math. Phys. 60, 011701 (2019)
J. Gaboriaud, L. Vinet, S. Vinet, A. Zhedanov, The generalized Racah algebra as a commutant. J. Phys. Conf. Ser. 1194(1), 012034 (2019)
V.X. Genest, L. Vinet, A. Zhedanov, The equitable Racah algebra from three su(1, 1) algebras. J. Phys. A Math. Theor. 47(2), 025203, 12 pp. (2014)
V.X. Genest, L. Vinet, A. Zhedanov, The Racah algebra and superintegrable models. J. Phys. Conf. Ser. 512, 012011 (2014)
P. Iliev, The generic quantum superintegrable system on the sphere and Racah operators. Lett. Math. Phys. 107(11), 2029–2045 (2017)
P. Iliev, Symmetry algebra for the generic superintegrable system on the sphere. J. High Energy Phys. 2018(2), 44 (2018), front matter+22 pp.
R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer, New York, 2010)
M.V. Tratnik, Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32, 2337–2342 (1991)
A.S. Zhedanov, “Hidden symmetry” of the Askey-Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)
Acknowledgements
The work of HDB is supported by the Research Foundation Flanders (FWO) under Grant EOS 30889451. HDB and WVDV are grateful for the hospitality extended to them by the Centre de Recherches Mathématiques in Montréal, where part of this research was carried out. The research of LV is funded in part by a discovery grant of the Natural Sciences and Engineering Council (NSERC) of Canada.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bie, H.D., Vinet, L., van de Vijver, W. (2021). The Racah Algebra and
.
In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-55777-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55776-8
Online ISBN: 978-3-030-55777-5
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)