Skip to main content

The Racah Algebra and

  • 831 Accesses

Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We conjecture the existence of an embedding of the Racah algebra into the universal enveloping algebra of . Evidence of this conjecture is offered by realizing both algebras using differential operators and giving an embedding in this realization.

Keywords

  • Racah algebra
  • Embedding
  • Lie algebra

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55777-5_19
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55777-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  1. N. Crampé, L. Poulain d’Andecy, L. Vinet, Temperley-Lieb, Brauer and Racah algebras and other centralizers of su(2). Trans. Amer. Math. Soc. 373(7), 4907–4932 (2020)

    CrossRef  MathSciNet  Google Scholar 

  2. N. Crampé, W. van de Vijver, L. Vinet, Racah problems for the oscillator algebra, the Lie algebra and multivariate Krawtchouk polynomials (2019). arXiv:1909.12643, 28 pages

    Google Scholar 

  3. H. De Bie, W. van de Vijver, A discrete realization of the higher rank Racah algebra. Constr. Approx. 52, 1–29 (2020). https://doi.org/10.1007/s00365-019-09475-0

    CrossRef  MathSciNet  Google Scholar 

  4. H. De Bie, V.X. Genest, W. van de Vijver, L. Vinet, A higher rank Racah algebra and the Laplace-Dunkl operator. J. Phys. A Math. Theor. 51, 025203 (20 pp.) (2018)

    Google Scholar 

  5. H. De Bie, P. Iliev, L. Vinet, Bargmann and Barut-Giradello models for the Racah algebra. J. Math. Phys. 60, 011701 (2019)

    CrossRef  ADS  MathSciNet  Google Scholar 

  6. J. Gaboriaud, L. Vinet, S. Vinet, A. Zhedanov, The generalized Racah algebra as a commutant. J. Phys. Conf. Ser. 1194(1), 012034 (2019)

    Google Scholar 

  7. V.X. Genest, L. Vinet, A. Zhedanov, The equitable Racah algebra from three su(1,  1) algebras. J. Phys. A Math. Theor. 47(2), 025203, 12 pp. (2014)

    Google Scholar 

  8. V.X. Genest, L. Vinet, A. Zhedanov, The Racah algebra and superintegrable models. J. Phys. Conf. Ser. 512, 012011 (2014)

    CrossRef  Google Scholar 

  9. P. Iliev, The generic quantum superintegrable system on the sphere and Racah operators. Lett. Math. Phys. 107(11), 2029–2045 (2017)

    CrossRef  ADS  MathSciNet  Google Scholar 

  10. P. Iliev, Symmetry algebra for the generic superintegrable system on the sphere. J. High Energy Phys. 2018(2), 44 (2018), front matter+22 pp.

    Google Scholar 

  11. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer, New York, 2010)

    CrossRef  Google Scholar 

  12. M.V. Tratnik, Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32, 2337–2342 (1991)

    CrossRef  ADS  MathSciNet  Google Scholar 

  13. A.S. Zhedanov, “Hidden symmetry” of the Askey-Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of HDB is supported by the Research Foundation Flanders (FWO) under Grant EOS 30889451. HDB and WVDV are grateful for the hospitality extended to them by the Centre de Recherches Mathématiques in Montréal, where part of this research was carried out. The research of LV is funded in part by a discovery grant of the Natural Sciences and Engineering Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik De Bie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bie, H.D., Vinet, L., van de Vijver, W. (2021). The Racah Algebra and . In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_19

Download citation