Abstract
Falsification of hybrid systems is attracting ever-growing attention in quality assurance of Cyber-Physical Systems (CPS) as a practical alternative to exhaustive formal verification. In falsification, one searches for a falsifying input that drives a given black-box model to output an undesired signal. In this paper, we identify input constraints—such as the constraint “the throttle and brake pedals should not be pressed simultaneously” for an automotive powertrain model—as a key factor for the practical value of falsification methods. We propose three approaches for systematically addressing input constraints in optimization-based falsification, two among which come from the lexicographic method studied in the context of constrained multi-objective optimization. Our experiments show the approaches’ effectiveness.
The authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST; Zhenya Zhang is supported by Grant-in-Aid for JSPS Fellows No. 19J15218.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Although the problem has a simple form of constraints, we prefer to name it unconstrained to distinguish it from the constrained setting we introduce later.
- 2.
Note that, in general, it is not always possible to specify when an objective function is “achieved”. However, the lexicographic methods require that for functions \(f_1, \ldots , f_{N-1}\), this is possible, and this is applicable in our context.
- 3.
Note that this is needed to distinguish inputs having robustness 0 (not falsifying) from those having negative robustness (falsifying).
- 4.
Technically, we modified the fitness evaluation of Breach to use the 3 new fitness functions.
References
List of references on constraint-handling techniques used with evolutionary algorithms. https://www.cs.cinvestav.mx/~constraint/
Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and coverage-based falsification for embedded control systems. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_24
Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_21
Akazaki, T., Kumazawa, Y., Hasuo, I.: Causality-aided falsification. In: Proceedings First Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM 2017, Turin, Italy, 19th September 2017, vol. 257, pp. 3–18. EPTCS (2017)
Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_27
Annapureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-Taliro: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K., Rustan, M. (eds.) TACAS 2011/ETAPS 2011, pp. 254–257. Springer-Verlag, Berlin, Heidelberg (2011)
Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, New York, NY, USA, pp. 1–10. ACM (2011)
Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1769–1776. IEEE (2005)
Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Belew, R.K., Booker, L.B., (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 2–9 (1991)
Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NASA Formal Methods. pp, pp. 54–70. Springer International Publishing, Cham (2019)
Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, New York, NY, USA, pp. 1016–1026. ACM (2018)
Chang, K.-H.: Chapter 19 - multiobjective optimization and advanced topics. In: Chang, K.-H. (ed.) e-Design, pp. 1105–1173. Academic Press, Boston (2015)
Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsification of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_35
Deshmukh, J.V., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-physical systems through Bayesian optimization. ACM Trans. Embed. Comput. Syst. 16(5), 170:1–170:18 (2017)
Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17
Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9
Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10
Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems with machine learning components. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5
Ehrgott, M.: Multicriteria Optimization. Springer-Verlag, Berlin (2005)
Ernst, G., Arcaini, P., Donzé, A., Fainekos, G., Mathesen, L., Pedrielli, G., Yaghoubi, S., Yamagata, Y., Zhang, Z.: ARCH-COMP 2019 category report: falsification. In: Frehse, G., Althoff, M., (eds.) ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. EPiC Series in Computing, vol. 61, pp. 129–140. EasyChair (2019)
Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I.: Fast falsification of hybrid systems using probabilistically adaptive input. In: Parker, D., Wolf, V. (eds.) Quantitative Evaluation of Systems. pp, pp. 165–181. Springer International Publishing, Cham (2019)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)
Fan, Z., Fang, Y., Li, W., Lu, J., Cai, X., Wei, C.: A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017, pp. 209–216. IEEE (2017)
Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal temporal logic. In: Ozay, N., Prabhakar, P., (eds.) Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, 16–18 April 2019, pp. 57–66. ACM (2019)
Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for automotive systems. In: Frehse, G., Althoff, M., (eds.) 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015, Seattle, USA, 13 April 2015. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2014)
Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification benchmark. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, HSCC 2014, NY, USA, pp. 253–262. ACM (2014)
Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based approaches for verification of embedded control systems: an overview of traditional and advanced modeling, testing, and verification techniques. IEEE Control Syst. 36(6), 45–64 (2016)
Kato, K., Ishikawa, F.: Learning-based falsification for model families of cyber-physical systems. In: 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 236–245, December 2019
Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_11
Luersen, M.A., Le Riche, R.: Globalized Nelder-Mead method for engineering optimization. Comput. Struct. 82(23), 2251–2260 (2004)
Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2010, NY, USA, pp. 211–220. ACM (2010)
Pinchera, D., Perna, S., Migliore, M.D.: A lexicographic approach for multi-objective optimization in antenna array design. Prog. Electromagn. Res. 59, 85–102 (2017)
Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the falsification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_1
Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification of hybrid systems guided by monte carlo tree search. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)
Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting, cegar-based falsification for hybrid systems. In: 2014 International Conference on Embedded Software, EMSOFT 2014, New Delhi, India, 12–17 October 2014, pp. 5:1–5:10. ACM (2014)
Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J., Jin, X.: Falsification of safety properties for closed loop control systems. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 299–300 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Arcaini, P., Hasuo, I. (2020). Constraining Counterexamples in Hybrid System Falsification: Penalty-Based Approaches. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-55754-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55753-9
Online ISBN: 978-3-030-55754-6
eBook Packages: Computer ScienceComputer Science (R0)