Skip to main content

Edema

  • Chapter
  • First Online:
Pathology of Lung Disease
  • 1013 Accesses

Abstract

Lung edema is defined as an accumulation of fluid within alveoli and small bronchi/bronchioles. Edema fluid enters the peripheral lung from the circulation via the interstitium into alveoli. It can be induced by various causes. The most common form is due to congestion of the pulmonary circulation, most often caused by heart failure either due to infarction, valvular diseases and alike. In these cases, the venous flow into the left atrium is reduced, resistance in the venous part of the circulation increases, and leakage of the pulmonary veins increase. The gaps between the endothelial cells increase in size and serum gets into the interstitium and causes interstitial edema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boral BM, Williams DJ, Boral LI. Disseminated intravascular coagulation. Am J Clin Pathol. 2016;146:670–80.

    Article  CAS  Google Scholar 

  2. West JB, Mathieu-Costello O. Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet. 1992;340:762–7.

    Article  CAS  Google Scholar 

  3. Luks AM, Swenson ER, Bartsch P. Acute high-altitude sickness. Eur Respir Rev. 2017;26:160096.

    Article  Google Scholar 

  4. Sartori C, Allemann Y, Scherrer U. Pathogenesis of pulmonary edema: learning from high-altitude pulmonary edema. Respir Physiol Neurobiol. 2007;159:338–49.

    Article  CAS  Google Scholar 

  5. Scherrer U, Rexhaj E, Jayet PY, Allemann Y, Sartori C. New insights in the pathogenesis of high-altitude pulmonary edema. Prog Cardiovasc Dis. 2010;52:485–92.

    Article  Google Scholar 

  6. Hong Z, Weir EK, Nelson DP, Olschewski A. Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes. Am J Respir Cell Mol Biol. 2004;31:337–43.

    Article  CAS  Google Scholar 

  7. Michelakis ED, Thebaud B, Weir EK, Archer SL. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol. 2004;37:1119–36.

    CAS  PubMed  Google Scholar 

  8. Mortimer H, Patel S, Peacock AJ. The genetic basis of high-altitude pulmonary oedema. Pharmacol Ther. 2004;101:183–92.

    Article  CAS  Google Scholar 

  9. Kaner RJ, Crystal RG. Pathogenesis of high altitude pulmonary edema: does alveolar epithelial lining fluid vascular endothelial growth factor exacerbate capillary leak? High Alt Med Biol. 2004;5:399–409.

    Article  CAS  Google Scholar 

  10. Kolluru GK, Tamilarasan KP, Rajkumar AS, Geetha Priya S, Rajaram M, Saleem NK, Majumder S, Jaffar Ali BM, Illavazagan G, Chatterjee S. Nitric oxide/cGMP protects endothelial cells from hypoxia-mediated leakiness. Eur J Cell Biol. 2008;87:147–61.

    Article  CAS  Google Scholar 

  11. Scherrer U, Turini P, Thalmann S, Hutter D, Salmon CS, Stuber T, Shaw S, Jayet PY, Sartori-Cucchial C, Villena M, Allemann Y, Sartori C. Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors. Adv Exp Med Biol. 2006;588:277–91.

    Article  Google Scholar 

  12. Comellas AP, Briva A, Dada LA, Butti ML, Trejo HE, Yshii C, Azzam ZS, Litvan J, Chen J, Lecuona E, Pesce LM, Yanagisawa M, Sznajder JI. Endothelin-1 impairs alveolar epithelial function via endothelial ETB receptor. Am J Respir Crit Care Med. 2009;179:113–22.

    Article  CAS  Google Scholar 

  13. Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Castano-Rodriguez C, Fernandez-Delgado R, Torres J, Aguilella VM, Enjuanes L. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330–9.

    Article  CAS  Google Scholar 

  14. Luo YP, Jiang L, Kang K, Fei DS, Meng XL, Nan CC, Pan SH, Zhao MR, Zhao MY. Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1. Int Immunopharmacol. 2014;20:24–32.

    Article  CAS  Google Scholar 

  15. Kim KJ, Malik AB. Protein transport across the lung epithelial barrier. Am J Phys Lung Cell Mol Phys. 2003;284:L247–59.

    CAS  Google Scholar 

  16. Viswanathan S, Eria L, Diunugala N, Johnson J, McClean C. An analysis of effects of San Diego wildfire on ambient air quality. J Air Waste Manage Assoc. 2006;56:56–67.

    Article  CAS  Google Scholar 

  17. Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990;3:202–19.

    CAS  PubMed  Google Scholar 

  18. Leininger JR, Farrell RL, Johnson GR. Acute lung lesions due to zirconium and aluminum compounds in hamsters. Arch Pathol Lab Med. 1977;101:545–9.

    CAS  PubMed  Google Scholar 

  19. Final Report on Carcinogens Background Document for Formaldehyde. Rep Carcinog Backgr Doc 2010:i-512.

    Google Scholar 

  20. Van de Louw A, Jean D, Frisdal E, Cerf C, d’Ortho MP, Baker AH, Lafuma C, Duvaldestin P, Harf A, Delclaux C. Neutrophil proteinases in hydrochloric acid- and endotoxin-induced acute lung injury: evaluation of interstitial protease activity by in situ zymography. Lab Investig. 2002;82:133–45.

    Article  Google Scholar 

  21. Bachelet M, Pinot F, Polla RI, Francois D, Richard MJ, Vayssier-Taussat M, Polla BS. Toxicity of cadmium in tobacco smoke: protection by antioxidants and chelating resins. Free Radic Res. 2002;36:99–106.

    Article  CAS  Google Scholar 

  22. Moller W, Hofer T, Ziesenis A, Karg E, Heyder J. Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol Appl Pharmacol. 2002;182:197–207.

    Article  Google Scholar 

  23. Wang XR, Pan LD, Zhang HX, Sun BX, Dai HL, Christiani DC. A longitudinal observation of early pulmonary responses to cotton dust. Occup Environ Med. 2003;60:115–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Popper .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popper, H. (2021). Edema. In: Pathology of Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55743-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55743-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55742-3

  • Online ISBN: 978-3-030-55743-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics