Skip to main content

After the Lips: Acoustic Resonances and Radiation

  • Chapter
  • First Online:
The Science of Brass Instruments

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 721 Accesses

Abstract

In this chapter describes the resonant properties of the air column contained within a brass instrument and the nature of the sound radiated from it. The wave equation is presented. Lumped and distributed resonators are defined; travelling and standing waves are explained, and the relationship between standing waves and acoustic resonances is discussed. Time domain and frequency domain descriptions of acoustic processes are compared, and the related concepts of impulse response and input impedance are introduced. Experimental techniques for measuring the input impedance of a brass instrument are described, and the technique of pulse reflectometry is outlined. The concepts of equivalent cone length and equivalent fundamental pitch are explained. The different types of bore profile which are found in brass instruments (cylindrical, conical and flaring) are reviewed, and the Bessel horn model of a flaring tube is examined. The ‘horn function’ is defined and its properties discussed. The effects of the mouthpiece and flaring bell on intonation and timbre are outlined, and the modifications introduced by opening toneholes, muting and hand stopping on horns are explained. The nature of sound radiation from brass instruments is reviewed. In a Going Further section, mathematical techniques for calculating input impedance are discussed, including transfer matrix methods taking into account the effects of losses and bends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amir, N., Rosenhouse, G. and Shimony, U. (1995). A discrete model for tubular acoustic systems with varying cross-section – the direct and inverse problem. Parts I and II: theory and experiments. Acustica 81, 450–474.

    Google Scholar 

  • Amir, N., Pagneux, V. and Kergomard, J. (1997). A study of wave propagation in varying cross-section waveguides by modal decomposition. Part II. Results. J. Acoust. Soc. Am. 101, 2504–2517, https://doi.org/10.1121/1.419306.

    ADS  Google Scholar 

  • Artim GmbH (2020). A-2230 Gänserndorf, Ziehrergasse 4, Austria. http://artim.at. Accessed April 2020.

  • Backus, J. (1974). Input impedance curves for the reed woodwind instruments. J. Acoust. Soc. Am. 56, 1266–1279, https://doi.org/10.1121/1.1903418.

    ADS  Google Scholar 

  • Backus, J. (1976). Input impedance curves for the brass instruments. J. Acoust. Soc. Am. 60, 470–480, https://doi.org/10.1121/1.381104.

    ADS  Google Scholar 

  • Barbieri, P. (2013). Physics of Wind Instruments and Organ Pipes 1100-2010, Chap. C. Latina, Il Levante Libreria.

    Google Scholar 

  • Benade, A. H. (1960). On the mathematical theory of woodwind finger holes. J. Acoust. Soc. Am. 32, 1591–1608, https://doi.org/10.1121/1.1907968.

    ADS  Google Scholar 

  • Benade, A. H. (1968). On the propagation of sound waves in a cylindrical conduit. J. Acoust. Soc. Am. 44, 616–623, https://doi.org/10.1121/1.1911130.

    ADS  Google Scholar 

  • Benade, A. H. (1973). The physics of brasses. Scientific American 229(1), 24–35.

    ADS  Google Scholar 

  • Benade, A. H. (1976). Fundamentals of musical acoustics. New York, Oxford University Press. 2nd ed. Mineola, Dover, 1990.

    Google Scholar 

  • Benade, A. H. and Ibisi, M. I. (1987). Survey of impedance methods and a new piezo-disk-driven impedance head for air columns. J. Acoust. Soc. Am. 81, 1152–1167, https://doi.org/10.1121/1.394636.

    ADS  Google Scholar 

  • Benade, A. H. and Jansson, E. V. (1974). On plane and spherical waves in horns with non-uniform flare: I. Theory of radiation, resonance frequencies, and mode conversion. Acustica 31, 79–98.

    MATH  Google Scholar 

  • Bouasse, H. (1929). Instruments à vent tomes I et II). Paris, Delagrave; repr. with additional material by Jean Kergomard, Paris, Blanchard (1986).

    Google Scholar 

  • Braden, A. (2006). Bore optimisation and impedance modelling of brass musical instruments Ph.D. Thesis, University of Edinburgh.

    Google Scholar 

  • Braden, A., Newton, M. and Campbell, D. M. (2009). Trombone bore optimization based on input impedance targets. J. Acoust. Soc. Am. 125, 2404–2412, https://doi.org/10.1121/1.3087423.

    ADS  Google Scholar 

  • Bruneau, M. (2006) Fundamentals of Acoustics. London, Wiley-ISTE.

    MATH  Google Scholar 

  • Buick, J. M., Kemp, J., Sharp, D. B., van Walstijn, M., Campbell, D. M. and Smith, R. A. (2002). Distinguishing between similar tubular objects using pulse reflectometry: a study of trumpet and cornet lead pipes. Meas. Sci. Technol. 13, 750–757. https://10.1088/0957-0233/13/5/313.

    ADS  Google Scholar 

  • Campbell, M. and Greated, C. (1987). The Musician’s Guide to Acoustics. Oxford University Press.

    Google Scholar 

  • Campbell, D. M. and MacGillivray, T. (1999). Acoustics of the Carnyx. In Hickmann, E., Laufs, I. and Eichmann, R. (Eds) Studies in Musical Archaeology II: Music Archaeology of Early Metal Ages, pp. 357–363. Berlin, Deutsches Archaeologisches Institut.

    Google Scholar 

  • Caussé, R., Kergomard, J. and X. Lurton (1984). Input impedance of brass musical instruments—Comparison between experiment and numerical models. J. Acoust. Soc. Am. 75, 241–254, https://doi.org/10.1121/1.390402.

    ADS  Google Scholar 

  • Caussé, R., Eveno, P., Gilbert, J. and Petiot, J. F. (2013). What can we deduce from measured resonance frequencies of trumpets concerning their playing frequencies? Proc. Mtgs. Acoust. 19, 035066.

    Google Scholar 

  • Chaigne. A. and Kergomard, J. (2016). Acoustics of Musical Instruments. New York, Springer.

    Google Scholar 

  • Chung, J. Y. and Blaser, D. A. (1980). Transfer function method of measuring in-duct acoustic properties. I: Theory. II: Experiment. J. Acoust. Soc. Am. 68, 907–921, https://doi.org/10.1121/1.385211.

    ADS  MathSciNet  Google Scholar 

  • Dalmont, J. P. (2001). Acoustic impedance measurement, Part I: a review. J. Sound. Vib. 243, 427–439.

    ADS  Google Scholar 

  • Dalmont, J. P. (2001) Acoustic impedance measurement, Part II: a new calibration method. J. Sound. Vib. 243, 441–459.

    ADS  Google Scholar 

  • Dalmont, J. P., Joly, N. and Nederveen, C. J. (2001). Radiation impedance of tubes with different flanges: numerical and experimental investigations. J. Sound Vib. 244, 504–534.

    ADS  Google Scholar 

  • Dalmont, J. P., Curtit, M. and Yahaya, A. F. (2012). On the accuracy of bore reconstruction from input impedance measurements: Application to bassoon crook measurements. J. Acoust. Soc. Am. 131, 708–714, https://doi.org/10.1121/1.3651793.

    Article  ADS  Google Scholar 

  • Dickens, P., Smith, J. R. and Wolfe, J. (2007). Improved precision in measurements of acoustic impedance spectra using resonance-free calibration loads and controlled error distribution. J. Acoust. Soc. Am. 121, 1471–1481.

    ADS  Google Scholar 

  • Dubos, V., Kergomard, J., Khettabi, A., Dalmont, J. P., Keefe, D. H. and Nederveen, C. (1999). Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acust. united Ac. 85, 153–169.

    Google Scholar 

  • Elliott, S. J. and Bowsher, J. M. (1982). Regeneration in brass wind instruments. J. Sound Vib. 83, 181–217.

    ADS  Google Scholar 

  • Eveno, P., Dalmont, J. P., Caussé, R. and Gilbert, J. (2012). Wave propagation and radiation in a horn: Comparisons between models and measurements. Acta Acust. united Ac. 98, 158–165, https://doi.org/10.3813/AAA.918501.

    Google Scholar 

  • Félix, S. and Pagneux, V. (2001). Sound propagation in rigid bends: A multimodal approach. J. Acoust. Soc. Am. 110, 1329–1337, https://doi.org/10.1121/1.1391249.

    ADS  Google Scholar 

  • Félix, S., Dalmont, J. P. and Nederveen, C. J. (2012). Effects of bending portions of the air column on the acoustical resonances of a wind instrument. J. Acoust. Soc. Am. 131, 4164–4172, https://doi.org/10.1121/1.3699267.

    ADS  Google Scholar 

  • Fletcher, N. H. and Rossing, T. D. (1998). The Physics of Musical Instruments, 2nd Ed. New York, Springer.

    MATH  Google Scholar 

  • Gibiat, V. and Laloë, F. (1990). Acoustical impedance measurements by the two-microphone-three-calibration (TMTC) method. J. Acoust. Soc. Am. 88, 2534–2545, https://doi.org/10.1121/1.399975.

    ADS  Google Scholar 

  • Giordano, N. (2017). Lip dynamics in a physical model of the trumpet. Proc. International Symposium on Musical Acoustics, Montreal, Canada, 101–104.

    Google Scholar 

  • Gray, C. D. (2005) Acoustic pulse reflectometry for the measurement of the vocal tract, with application to voice synthesis. Ph.D. thesis University of Edinburgh.

    Google Scholar 

  • Hall, W. M. (1932). Comments on the theory of horns. J. Acoust. Soc. Am. 3, 552–561, https://doi.org/10.1121/1.1915578.

    ADS  MATH  Google Scholar 

  • Helmholtz, H. L. F. (1877). Die Lehre von den Tonempfingungen, 4th Ed. Braunschweig, Friedrich Vieweg. English translation with additional material: Ellis, A. J. On the Sensations of Tone, 2nd Ed. London, Longman, Green and Co. (1885); repr. New York, Dover (1954)

    Google Scholar 

  • Hélie, T. and Rodet, X. (2003). Radiation of a pulsating portion of a sphere: application to horn radiation. Acta Acust. united Ac. 89, 565–577.

    Google Scholar 

  • Hendrie, D. (2007). Development of bore reconstruction technique applied to the study of brass wind instruments. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Hirschberg, A., Gilbert, J., Msallam, R. and Wijnands, A. P. J. (1996b). Shock waves in trombones. J. Acoust. Soc. Am. 99, 1754–1758, https://doi.org/10.1121/1.414698.

    ADS  Google Scholar 

  • Kausel, W. (2001). Optimization of brasswind instruments and its application in bore reconstruction. J. New Music Res. 30, 69–82.

    Google Scholar 

  • Keefe, D. H. (1984). Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions. J. Acoust. Soc. Am. 75, 58–62, https://doi.org/10.1121/1.390300.

    ADS  MATH  Google Scholar 

  • Keefe, D. H. (1990). Woodwind air column models. J. Acoust. Soc. Am. 88, 35–51, https://doi.org/10.1121/1.399911.

    ADS  Google Scholar 

  • Kemp, J. A. (2002). Theoretical and experimental study of wave propagation in brass musical instruments. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Kemp, J. A., van Walstijn, M., Campbell, D. M., Chick, J. P. and Smith, R. A. (2010). Time domain wave separation using multiple microphones. J. Acoust. Soc. Am. 128, 195–205, 10.1121/1.3392441.

    Google Scholar 

  • Kemp, J., López-Carromero, A. and Campbell, M. (2017). Pressure fields in the vicinity of brass musical instrument bells measured using a two dimensional grid array and comparison with multimodal models. Proc. 24th International Congress on Sound and Vibration, London.

    Google Scholar 

  • Kent, E. L. (1956). The Inside Story of Brass Instruments. Elkhart, C. G. Conn Ltd.

    Google Scholar 

  • Kergomard, J. and Caussé, R. (1986). Measurement of acoustic impedance using a capillary: An attempt to achieve optimization. J. Acoust. Soc. Am. 79, 1129–1140, https://doi.org/10.1121/1.393385.

    ADS  Google Scholar 

  • Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V. (1999). Fundamentals of Acoustics, 4th Ed. New York, Wiley.

    Google Scholar 

  • Klaus, S. K. and Pyle, R. W. (2015). Trumpet mute pitch: an analysis of three historic trumpet mutes. Proc. Third Vienna Talk on Musical Acoustics, University of Music and Performing Arts, Vienna, 88–91.

    Google Scholar 

  • Krehl, P. and Engemann, S. (1995). August Toepler – the first who visualized shock waves. Shock Waves 5, 1–18.

    ADS  MATH  Google Scholar 

  • Kühnelt, H. (2007). Vortex sound in recorder- and flute-like instruments: Numerical simulation and analysis. Proc. International Symposium on Musical Acoustics, Barcelona, 1-S1-6.

    Google Scholar 

  • Lefebvre, A. (2010). Computational acoustic methods for the design of woodwind instruments. Ph.D. thesis, McGill University, Montreal.

    Google Scholar 

  • Levine, H. and Schwinger, J. (1948). On the radiation of sound from an unflanged pipe. Phys. Rev. 73, 383–406.

    ADS  MathSciNet  MATH  Google Scholar 

  • Li, A., Sharp, D. B. and Forbes, B. J. (2005). Increasing the axial resolution of bore profile measurements using acoustic pulse reflectometry. Meas. Sci. Technol. 16, 2001–2019, doi:10.1088/0957-0233/16/10/017.

    Google Scholar 

  • Lokki, T. (2014). Tasting music like wine – sensory evaluation of concert halls. Physics Today 67(1), 27.

    ADS  Google Scholar 

  • López-Carromero, A. (2018). Experimental investigation of acoustic characteristics of radiation and playing gestures for lip-excited musical instruments. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • López-Carromero, A., Campbell, D. M., Kemp, J. and Rendon, P. L. (2016). Validation of brass wind instrument radiation models in relation to their physical accuracy using an optical Schlieren imaging setup. Proc. Mtgs. Acoust. 28, 035003.

    Google Scholar 

  • Lurton, X. (1981). Etude analytique de l’impédance d’entrée des instruments à embouchure. Acustica 49, 142–151.

    Google Scholar 

  • Macaluso, C. A. and Dalmont, J. P. (2011) Trumpet with near-perfect Harmonicity: Design and acoustic results, J. Acoust. Soc. Am. 129, 404–414. https://doi.org/10.1121/1.3518769.

    ADS  Google Scholar 

  • Martin, D. W. (1942). Lip vibrations in a cornet mouthpiece. J. Acoust. Soc. Am. 13, 305–308, https://doi.org/10.1121/1.1902242.

    ADS  Google Scholar 

  • Mersenne, M. (1635). Harmonicorum libri XII, Paris.

    Google Scholar 

  • Meyer, J. (2009). Acoustics and the Performance of Music, 5th Edn., English transl. Hansen, U. New York, Springer.

    Google Scholar 

  • Meyer, J. and Wogram, K. (1969). Die Richtcharakteristiken des Hornes. Das Musikinstrument 18(6), 1.

    Google Scholar 

  • Meyer, J. and Wogram, K. (1970). Die Richtcharakteristiken von Trompete, Posaune und Tuba. Das Musikinstrument 19, 171.

    Google Scholar 

  • Nederveen, C. J. (1969). Acoustical Aspects of Woodwind Instruments. Amsterdam, Fritz Knuf.

    Google Scholar 

  • Nederveen, C. J. (1998a). Acoustical Aspects of Woodwind Instruments, 2nd. Ed. with additional material, Northern Illinois University, 1998.

    Google Scholar 

  • Nederveen, C. J. (1998b). Influence of a toroidal bend on wind instrument tuning. J. Acoust. Soc. Am. 104, 1616–1626, https://doi.org/10.1121/1.424374.

    ADS  Google Scholar 

  • Noreland, D. (2002). A numerical method for acoustic waves in horns. Acta Acust. United Ac. 88, 576–586.

    Google Scholar 

  • Ossman, T., Pichler, H. and Widholm, G. (1989). BIAS: A computer-aided test system for brass wind instruments. Audio Engineering Society Preprint No. 2834.

    Google Scholar 

  • Otondo, F. and Rindel, J. H. (2004). The influence of the directivity of musical instruments in a room. Acta Acust. United Ac. 90, 1178–1184.

    Google Scholar 

  • Otondo, F. and Rindel, J. H. (2005). A new method for the radiation representation of musical instruments in auralizations. Acta Acust. United Ac. 91, 902–906.

    Google Scholar 

  • Pagneux, V., Amir, N. and Kergomard, J. (1996). A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation. J. Acoust. Soc. Am. 100, 2034–2048, https://doi.org/10.1121/1.417913.

    ADS  Google Scholar 

  • Pandya, B. H., Settles, G. S. and Miller, J. D. (2003). Schlieren imaging of shock waves from a trumpet. J. Acoust. Soc. Am. 114, 3363–3367, https://doi.org/10.1121/1.1628682.

    ADS  Google Scholar 

  • Pätynen, J. 2011. A Virtual Symphony Orchestra for Studies of Concert Hall Acoustics. Ph.D. thesis, Aalto University.

    Google Scholar 

  • Pätynen, J. and Lokki, T. (2010). Directivities of symphony orchestra instruments. Acta Acust. United Ac. 96, 138–187, https://doi.org/10.3813/AAA.918265.

    Google Scholar 

  • Pelzer, S., Pollow, M. and Vorländer, M. 2012. Auralization of a virtual orchestra using directivities of measured symphonic instruments. Proc. Acoustics12, Nantes, France, 2379–2384.

    Google Scholar 

  • Pierce, A. D. (1989). Acoustics, 2nd Ed. Acoustical Society of America, Woodbury, NY.

    Google Scholar 

  • Poirson, E., Petiot, J. F. and Gilbert, J. (2005). Study of the brightness of trumpet tones. J. Acoust. Soc. Am. 118, 2656–2666, https://doi.org/10.1121/1.2006007.

    ADS  Google Scholar 

  • Pratt, R. L., Elliott, S. J. and Bowsher, J. M. (1977). The measurement of the acoustic impedance of brass instruments. Acta Acust. United Ac. 38, 236–246.

    Google Scholar 

  • Pyle, R. W. (1975). Effective length of horns. J. Acoust. Soc. Am. 57, 1309–1317, https://doi.org/10.1121/1.380607.

    ADS  Google Scholar 

  • Pyle, R. W. (1991). A computational model of the Baroque trumpet and mute. Historic Brass Society Journal 3, 79–97.

    Google Scholar 

  • Rayleigh, Lord (1894). The Theory of Sound. London, Macmillan; repr. Dover, 1945.

    Google Scholar 

  • Schumacher, R. T. (1981). Ab initio calculations of the oscillation of a clarinet. Acustica 48, 71–85.

    Google Scholar 

  • Settles, G. S. (2001). Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. New York, Springer.

    MATH  Google Scholar 

  • Sharp, D. (1996). Acoustic pulse reflectometry for the measurement of musical wind instruments. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Sharp, D. B., Mamou-Mani, A. and van Walstijn, M. (2011). A single microphone capillary based system for measuring the complex input impedance of musical wind instruments. Acta Acust. United Ac. 97, 819–829, https://doi.org/10.3813/AAA.918462.

    Google Scholar 

  • Singh, R. and Schary, M. (1978). Acoustic impedance measurement using sine sweep excitation and known volume velocity technique. J. Acoust. Soc. Am. 64, 995–1003, https://doi.org/10.1121/1.382061.

    ADS  Google Scholar 

  • Sluchin, B. and Caussé, R. (1991). Sourdines des Cuivres. Paris, Editions de la Maison des Sciences de l’Homme.

    Google Scholar 

  • Stradner, G. (2015). Transposing mutes for trumpets. Proc. Third Vienna Talk on Musical Acoustics, 16–19 Sept., University of Music and the Performing Arts, Vienna, 92–25.

    Google Scholar 

  • van Walstijn, M. O., Cullen, J. S. and Campbell, D. M. (1997). Modelling viscothermal wave propagation in wind instrument air columns. Proc. International Symposium on Musical Acoustics, Edinburgh: in Proc. Institute of Acoustics 19(5), 413–418, 1997.

    Google Scholar 

  • van Walstijn, M., Campbell, M., Kemp, J., Sharp, D. (2005). Wideband measurement of the acoustic impedance of tubular objects. Acta Acust. United Ac. 91, 590–604.

    Google Scholar 

  • Vasari, G. (1568). Le vite de’ più eccellenti pittori, scultori, e architettore, 2nd Ed. Florence, Giunti.

    Google Scholar 

  • Webster, J. C. (1947). An electrical method of measuring the intonation of cup-mouthpiece instruments. J. Acoust. Soc. Am. 19, 902–906.

    ADS  Google Scholar 

  • Widholm, G. (1995). Brass wind instrument quality measured and evaluated by a new computer system. In Proc. 15th International Congress on Acoustics, Trondheim, Norway, Vol. III, 517–520.

    Google Scholar 

  • Wogram, K. (1972). Ein Beitrag zur Ermittlung der Stimmung von Blechblasinstrument Dr.-Ing. diss., Technischen Universitat Carolo-Wilhelmina zu Braunschweig.

    Google Scholar 

  • Yoshikawa, S. and Nobara, N. (2017). Acoustical modeling of mutes for brass instruments. In Schneider, A. (Ed.), Studies in Musical Acoustics and Psychoacoustics, Current Research in Systematic Musicology 4. New York: Springer, 143–186, https://doi.org/10.1007/978-3-319-47292-8.

    Google Scholar 

  • Zorumski, W. E. (1973). Generalized radiation impedances and reflection coefficients of circular and annular ducts. J. Acoust. Soc. Am. 54, 1667–1673, https://doi.org/10.1121/1.1914466.

    ADS  Google Scholar 

  • Zwicker, G. and Kosten, C. (1949) Sound Absorbing Materials. Amsterdam, Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campbell, M., Gilbert, J., Myers, A. (2021). After the Lips: Acoustic Resonances and Radiation. In: The Science of Brass Instruments. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-55686-0_4

Download citation

Publish with us

Policies and ethics