Skip to main content

Thin Liquid Films

  • Chapter
  • First Online:
Emulsions, Microemulsions and Foams

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The first studies of thin liquid films were inspired by the vivid colors of films surrounding soap bubbles. These liquid films are stabilized by two monolayers of soap molecules adsorbed at both their inner and outer surfaces. The films thin due to gravity, and when their thickness reaches values of the order of 1 μm, beautiful colors are observed, which are familiar to everyone. They arise from interferences between white light reflected by the inner and outer film surfaces. The color changes were studied by Newton who also reported the existence of “black films”, i.e., films much thinner than the wavelength of light, that reflect so little light that they can no longer be seen by eye (Newton 1704). Black films can be found during the last thinning stages, before films rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts, D. G. A. L., & Lekkerkerker, H. N. W. (2008). Droplet coalescence: Drainage, film rupture and neck growth in ultralow interfacial tension systems. Journal of Fluid Mechanics, 606, 275–294. https://doi.org/10.1017/S0022112008001705.

    Article  ADS  MATH  Google Scholar 

  • Andersson, G., Carey, E., & Stubenrauch, C. (2010). Disjoining pressure study of formamide foam films stabilized by surfactants. Langmuir, 26(11), 7752–7760. https://doi.org/10.1021/la100586h.

    Article  Google Scholar 

  • Asnacios, A., Espert, A., Colin, A., & Langevin, D. (1997). Structural forces in thin films made from polyelectrolyte solutions. Physical Review Letters, 78(26), 4974–4977.

    Article  ADS  Google Scholar 

  • Bauget, F., Langevin, D., & Lenormand, R. (2001). Dynamic surface properties of asphaltenes and resins at the oil – Air interface. Journal of Colloid and Interface Science, 239(2), 501–508.

    Article  ADS  Google Scholar 

  • Marquez-Beltran, C., & Langevin, D. (2005). Stratification kinetics of polyelectrolyte solutions confined in thin films. Physical Review Letters, 94(21), 217803. https://doi.org/10.1103/PhysRevLett.94.217803.

  • Marquez-Beltran, C., Guillot, S., & Langevin, D. (2003). Stratification phenomena in thin liquid films containing polyelectrolytes and stabilized by ionic surfactants. Macromolecules, 36(22), 8506–8512. https://doi.org/10.1021/ma034599.

  • Bergeron, V. (1997). Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films. Langmuir, 13(13), 3474–3482.

    Article  Google Scholar 

  • Bergeron, V., & Radke, C. J. (1992). Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir, 8(12), 3020–3026.

    Article  Google Scholar 

  • Bos, M. A., & van Vliet, T. (2001). Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Advances in Colloid and Interface Science, 91(3), 437–471.

    Article  Google Scholar 

  • Champougny, L., Scheid, B., Restagno, F., Vermant, J., & Rio, E. (2015). Surfactant-induced rigidity of interfaces: A unified approach to free and dip-coated films. Soft Matter, 11(14), 2758–2770. https://doi.org/10.1039/c4sm02661f.

    Article  ADS  Google Scholar 

  • Champougny, L., Rio, E., Restagno, F., & Scheid, B. (2017). The break-up of free films pulled out of a pure liquid bath. Journal of Fluid Mechanics, 811, 499–524. https://doi.org/10.1017/jfm.2016.758.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Champougny, L., Miguet, J., Henaff, R., Restagno, F., Boulogne, F., & Rio, E. (2018). Influence of evaporation on soap film rupture. Langmuir, 34(10), 3221–3227. https://doi.org/10.1021/acs.langmuir.7b04235.

    Article  Google Scholar 

  • Chan, D. Y. C., Klaseboer, E., & Manica, R. (2011). Film drainage and coalescence between deformable drops and bubbles. Soft Matter, 7(6), 2235–2264. https://doi.org/10.1039/c0sm00812e.

    Article  ADS  Google Scholar 

  • Claesson, P. M., Kjellin, M., Rojas, O. J., & Stubenrauch, C. (2006). Short-range interactions between non-ionic surfactant layers. Physical Chemistry Chemical Physics, 8(47), 5501–5514. https://doi.org/10.1039/b610295f.

    Article  Google Scholar 

  • de Feijter, J. A. (1988). Thermodynamics of thin liquid films. In I. B. Invanov (Ed.), Thin Liquid Films (Vol. 29, pp. 1–47). New York: Marcel Dekker.

    Google Scholar 

  • de Feijter, J. A., Rijnbout, J. B., & Vrij, A. (1978). Contact angles in thin liquid-films. 1. Thermodynamic description. Journal of Colloid and Interface Science, 64(2), 258–268. https://doi.org/10.1016/0021-9797(78)90361-2.

    Article  ADS  Google Scholar 

  • de Gennes, P. G. (1987). Polymers at an interface – A simplified view. Advances in Colloid and Interface Science, 27(3–4), 189–209. https://doi.org/10.1016/0001-8686(87)85003-0.

    Article  Google Scholar 

  • de Gennes, P. G. (2001a). Some remarks on coalescence in emulsions or foams. Chemical Engineering Science, 56(19), 5449–5450.

    Article  Google Scholar 

  • de Gennes, P. G. (2001b). “Young” soap films. Langmuir, 17(8), 2416–2419. https://doi.org/10.1021/la001538l.

    Article  Google Scholar 

  • de Gennes, P. G., & Prost, J. (1993). The physics of liquid crystals. Oxford: Clarendon Press.

    Google Scholar 

  • de Gennes, P.-G., Brochard-Wyart, F., & Quéré, D. (2004). Capillarity and wetting phenomena. New York: Springer.

    Book  MATH  Google Scholar 

  • de Vries, A. J. (1958). Foam stability: Part V. Mechanism of film rupture. Recueil des Travaux Chimiques des Pays-Bas, 77(5), 441–461. https://doi.org/10.1002/recl.19580770510.

    Article  Google Scholar 

  • Delacotte, J., Rio, E., Restagno, F., Uzum, C., von Klitzing, R., & Langevin, D. (2010). Viscosity of polyelectrolytes solutions in nanofilms. Langmuir, 26(11), 7819–7823. https://doi.org/10.1021/la9046676.

    Article  Google Scholar 

  • Delacotte, J., Montel, L., Restagno, F., Scheid, B., Dollet, B., Stone, H. A., Langevin, D., & Rio, E. (2012). Plate coating: Influence of concentrated surfactants on the film thickness. Langmuir, 28(8), 3821–3830. https://doi.org/10.1021/la204386b.

    Article  Google Scholar 

  • Denkov, N. D. (2004). Mechanisms of foam destruction by oil-based antifoams. Langmuir, 20(22), 9463–9505. https://doi.org/10.1021/la049646o.

    Article  Google Scholar 

  • Derjaguin, B., & Kussakov, M. (1939). Anomalous properties of thin polymolecular films V. An experimental investigation of polymolecular solvate (adsorbed) films as applied to the development of a mathematical theory of the stability of colloids. Acta Physicochimica URSS, 10(1), 25–44.

    Google Scholar 

  • Derjaguin, B., & Landau, L. (1941). The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim. URSS, 14, 633–52), 58.

    Google Scholar 

  • Dimitrova, T. D., Leal-Calderon, F., Gurkov, T. D., & Campbell, B. (2001). Disjoining pressure vs thickness isotherms of thin emulsion films stabilized by proteins. Langmuir, 17(26), 8069–8077. https://doi.org/10.1021/la0111147.

    Article  Google Scholar 

  • Djabbarah, N. F., & Wasan, D. T. (1982). Dilational viscoelastic properties of fluid interfaces. 3. Mixed surfactant systems. Chemical Engineering Science, 37(2), 175–184. https://doi.org/10.1016/0009-2509(82)80152-8.

    Article  Google Scholar 

  • Donaldson, S. H., Røyne, A., Kristiansen, K., Rapp, M. V., Das, S., Gebbie, M. A., Lee, D. W., Stock, P., Valtiner, M., & Israelachvili, J. (2015). Developing a general interaction potential for hydrophobic and hydrophilic interactions. Langmuir, 31(7), 2051–2064. https://doi.org/10.1021/la502115g.

    Article  Google Scholar 

  • Dreyfus, R., Lacoste, D., Bibette, J., & Baudry, J. (2009). Measuring colloidal forces with the magnetic chaining technique. The European Physical Journal E, 28(2), 113–123.

    Article  ADS  Google Scholar 

  • Espert, A., von Klitzing, R., Poulin, P., Colin, A., Zana, R., & Langevin, D. (1998). Behavior of soap films stabilized by a cationic dimeric surfactant. Langmuir, 14(15), 4251–4260.

    Article  Google Scholar 

  • Evers, L. J., Shulepov, S. Y., & Frens, G. (1997). Bursting dynamics of thin free liquid films from Newtonian and viscoelastic solutions. Physical Review Letters, 79(24), 4850–4853.

    Article  ADS  Google Scholar 

  • Exerowa, D., & Kruglyakov, P. M. (1998). Foam and foam films. New York: Elsevier.

    Google Scholar 

  • Exerowa, D., Nikolov, A., & Zacharieva, M. (1981). Common black and Newton film formation. Journal of Colloid and Interface Science, 81(2), 419–429. https://doi.org/10.1016/0021-9797(81)90424-0.

    Article  ADS  Google Scholar 

  • Farajzadeh, R., Krastev, R., & Zitha, P. L. J. (2008). Foam film permeability: Theory and experiment. Advances in Colloid and Interface Science, 137(1), 27–44. https://doi.org/10.1016/j.cis.2007.08.002.

    Article  Google Scholar 

  • Frankel, S. P., & Mysels, K. J. (1962). On dimpling during approach of 2 interfaces. Journal of Physical Chemistry, 66(1), 190–191. https://doi.org/10.1021/j100807a513.

    Article  Google Scholar 

  • Gambassi, A., Maciolek, A., Hertlein, C., Nellen, U., Helden, L., Bechinger, C., & Dietrich, S. (2009). Critical Casimir effect in classical binary liquid mixtures. Physical Review E, 80(6), 061143. https://doi.org/10.1103/PhysRevE.80.061143.

    Article  ADS  Google Scholar 

  • Gibbs, J. W. (1928). The collected works (Vol. 1). London: Longmans, Green and co.

    MATH  Google Scholar 

  • Heinig, P., Beltran, C. M., & Langevin, D. (2006). Domain growth dynamics and local viscosity in stratifying foam films. Physical Review E, 73(5), 051607. https://doi.org/10.1103/PhysRevE.73.051607.

    Article  ADS  Google Scholar 

  • Helm, C. A., Israelachvili, J. N., & McGuiggan, P. M. (1992). Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry, 31(6), 1794–1805.

    Article  Google Scholar 

  • Henry, C. L., Dalton, C. N., Scruton, L., & Craig, V. S. J. (2007). Ion-specific coalescence of bubbles in mixed electrolyte solutions. Journal of Physical Chemistry C, 111(2), 1015–1023. https://doi.org/10.1021/jp066400b.

    Article  Google Scholar 

  • Horozov, T. S., & Binks, B. P. (2006). Particle-stabilized emulsions: A bilayer or a bridging monolayer? Angewandte Chemie, 118(5), 787–790. https://doi.org/10.1002/ange.200503131.

    Article  Google Scholar 

  • Israelachvili, J. (1992). Intermolecular and surface forces (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Ivanov, I. B., & Dimitrov, D. S. (1988). Thin film drainage. In I. B. Ivanov (Ed.), Thin liquid films (Vol. 29, pp. 379–496). New York: Marcel Dekker.

    Google Scholar 

  • Joanny, J. F., & de Gennes, P. G. (1986). Upward creep of a wetting fluid -A scaling analysis. Journal de Physique, 47(1), 121–127.

    Article  Google Scholar 

  • Johnnott, E. S. (1906). Philosophical Magazine, 11, 160.

    Google Scholar 

  • Joye, J. L., Hirasaki, G. J., & Miller, C. A. (1994). Asymmetric drainage in foam films. Langmuir, 10(9), 3174–3179.

    Article  Google Scholar 

  • Karakashev, S. I., Nguyen, P. T., Tsekov, R., Hampton, M. A., & Nguyen, A. V. (2008). Anomalous ion effects on rupture and lifetime of aqueous foam films formed from monovalent salt solutions up to saturation concentration. Langmuir, 24(20), 11587–11591. https://doi.org/10.1021/la801456j.

    Article  ADS  Google Scholar 

  • Katsir, Y., & Marmur, A. (2014a). Rate of bubble coalescence following quasi-static approach: Screening and neutralization of the electric double layer. Scientific Reports, 4, 4266. https://doi.org/10.1038/srep04266.

    Article  ADS  Google Scholar 

  • Katsir, Y., & Marmur, A. (2014b). Rate of bubble coalescence following dynamic approach: Collectivity-induced specificity of ionic effect. Langmuir, 30(46), 13823–13830. https://doi.org/10.1021/la503373d.

    Article  Google Scholar 

  • Khristov, K. I., Exerowa, D. R., & Krugljakov, P. M. (1983). Influence of the type of foam films and the type of surfactant on foam stability. Colloid and Polymer Science, 261(3), 265–270. https://doi.org/10.1007/bf01469674.

    Article  Google Scholar 

  • Khristov, K., Taylor, S. D., Czarnecki, J., & Masliyah, J. (2000). Thin liquid film technique – Application to water-oil-water bitumen emulsion films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 174(1–2), 183–196.

    Article  Google Scholar 

  • Kim, Y. H., Koczo, K., & Wasan, D. T. (1997). Dynamic film and interfacial tensions in emulsion and foam systems. Journal of Colloid and Interface Science, 187(1), 29–44. https://doi.org/10.1006/jcis.1996.4507.

    Article  ADS  Google Scholar 

  • Kleinschmidt, F., Stubenrauch, C., Delacotte, J., von Klitzing, R., & Langevin, D. (2009). Stratification of foam films containing polyelectrolytes. Influence of the polymer backbone’s rigidity. Journal of Physical Chemistry B, 113(12), 3972–3980. https://doi.org/10.1021/jp8066553.

    Article  Google Scholar 

  • Kralchevsky, P. A., Nikolov, A. D., Wasan, D. T., & Ivanov, I. B. (1990). Formation and expansion of dark spots in stratifying foam films. Langmuir, 6(6), 1180–1189.

    Article  Google Scholar 

  • Landau, L., & Levich, B. (1942). Dragging of a liquid by a moving plate. Acta Physicochimica Urss, 17, 42–54.

    Google Scholar 

  • Langevin, D. (1992b). Adsorbed monolayers. In D. Langevin (Ed.), Light scattering by liquid surfaces and complementary techniques (Vol. 41, pp. 161–201). New York: Marcel Dekker.

    Google Scholar 

  • Langevin, D. (2015). Bubble coalescence in pure liquids and in surfactant solutions. Current Opinion in Colloid & Interface Science, 20(2), 92–97. https://doi.org/10.1016/j.cocis.2015.03.005.

    Article  Google Scholar 

  • Lifshitz, E. M. (1956). The theory of molecular attractive forces between solids. Soviet Physics JETP-URSS, 2(1), 73–83.

    Google Scholar 

  • Lohse, D., & Zhang, X. H. (2015). Surface nanobubbles and nanodroplets. Reviews of Modern Physics, 87(3), 981–1035. https://doi.org/10.1103/RevModPhys.87.981.

    Article  ADS  MathSciNet  Google Scholar 

  • Ludwig, M., Witt, M. U., & von Klitzing, R. (2019). Bridging the gap between two different scaling laws for structuring of liquids under geometrical confinement. Advances in Colloid and Interface Science, 269, 270–276. https://doi.org/10.1016/j.cis.2019.04.012.

    Article  Google Scholar 

  • Lyklema, J., & Mysels, K. J. (1965). A study of double layer repulsion and van der waals attraction in soap films. Journal of the American Chemical Society, 87(12), 2539–2546. https://doi.org/10.1021/ja01090a003.

    Article  Google Scholar 

  • Mastropietro, D. J., & Ducker, W. A. (2012). Forces between hydrophobic solids in concentrated aqueous salt solution. Physical Review Letters, 108(10), 106101. https://doi.org/10.1103/PhysRevLett.108.106101.

    Article  ADS  Google Scholar 

  • Mysels, K. J., & Jones, M. N. (1966). Direct measurement of the variation of double-layer repulsion with distance. Discussions of the Faraday Society, 42, 42–50.

    Article  Google Scholar 

  • Mysels, K., Shinoda, K., & Frankel, S. (1959). Soap films. Pergamon Press.

    Google Scholar 

  • Newton, I. (1704). Opticks. London: Smith & Walford.

    MATH  Google Scholar 

  • Nikolov, A. D., & Wasan, D. T. (1989). Ordered micelle structuring in thin films formed from anionic surfactant solutions. 1 Experimental. Journal of Colloid and Interface Science, 133, 1), 1–1),12.

    Article  ADS  Google Scholar 

  • Ninham, B. W., Pashley, R. M., & Lo Nostro, P. (2017). Surface forces: Changing concepts and complexity with dissolved gas, bubbles, salt and heat. Current Opinion in Colloid & Interface Science, 27, 25–32. https://doi.org/10.1016/j.cocis.2016.09.003.

    Article  Google Scholar 

  • Omarjee, P., Espert, A., & Mondain-Monval, O. (2001). Polymer-induced repulsive forces at solid-liquid and at liquid-liquid interfaces. Langmuir, 17(18), 5693–5695. https://doi.org/10.1021/la010198g.

    Article  Google Scholar 

  • Pashley, R. M., & Ninham, B. W. (1987). Double-layer forces in ionic micellar solutions. Journal of Physical Chemistry, 91(11), 2902–2904. https://doi.org/10.1021/j100295a049.

    Article  Google Scholar 

  • Pereira, L. G. C., Johansson, C., Blanch, H. W., & Radke, C. J. (2001). A bike-wheel microcell for measurement of thin-film forces. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 186(1–2), 103–111.

    Google Scholar 

  • Perrin, J. (1918). Annales de Physique, 10, 160.

    Article  ADS  Google Scholar 

  • Plateau, J. (1873). Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (Vol. 1). Paris: Gauthier-Villars.

    MATH  Google Scholar 

  • Politova, N. I., Tcholakova, S., Tsibranska, S., Denkov, N. D., & Muelheims, K. (2017). Coalescence stability of water-in-oil drops: Effects of drop size and surfactant concentration. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 531, 32–39. https://doi.org/10.1016/j.colsurfa.2017.07.085.

    Article  Google Scholar 

  • Prins, A., Arcuri, C., & Vandente, M. (1967). Elasticity of thin liquid films. Journal of Colloid and Interface Science, 24(1), 84. https://doi.org/10.1016/0021-9797(67)90281-0.

    Article  ADS  Google Scholar 

  • Roth, R., Evans, R., & Dietrich, S. (2000). Depletion potential in hard-sphere mixtures: Theory and applications. Physical Review E, 62(4), 5360–5377.

    Article  ADS  Google Scholar 

  • Rullier, B., Axelos, M. A. V., Langevin, D., & Novales, B. (2010). beta-Lactoglobulin aggregates in foam films: Effect of the concentration and size of the protein aggregates. Journal of Colloid and Interface Science, 343(1), 330–337. https://doi.org/10.1016/j.jcis.2009.11.015.

    Article  ADS  Google Scholar 

  • Safouane, M., & Langevin, D. (2009). Surface viscoelasticity of concentrated salt solutions: Specific Ion effects. Chemical Physics Physical Chemistry, 10(1), 222–225. https://doi.org/10.1002/cphc.200800527.

    Article  Google Scholar 

  • Saint-Jalmes, A., Sonin, A. A., Delsanti, M., Guenoun, P., Yang, J., Mays, J. W., & Langevin, D. (2002). Disjoining pressures and ordering in thin liquid films containing charged diblock copolymers adsorbed at the interfaces. Langmuir, 18(6), 2103–2110. https://doi.org/10.1021/0110971.

    Article  Google Scholar 

  • Santini, E., Ravera, F., Ferrari, M., Stubenrauch, C., Makievski, A., & Kragel, J. (2007). A surface rheological study of non-ionic surfactants at the water-air interface and the stability of the corresponding thin foam films. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 298(1–2), 12–21. https://doi.org/10.1016/j.colsurfa.2006.12.004.

    Article  Google Scholar 

  • Seddon, J. R. T., Lohse, D., Ducker, W. A., & Craig, V. S. J. (2012). A deliberation on nanobubbles at surfaces and in bulk. ChemPhysChem, 13(8), 2179–2187. https://doi.org/10.1002/cphc.201100900.

    Article  Google Scholar 

  • Seiwert, J., Dollet, B., & Cantat, I. (2014). Theoretical study of the generation of soap films: Role of interfacial visco-elasticity. Journal of Fluid Mechanics, 739, 124–142. https://doi.org/10.1017/jfm.2013.625.

    Article  ADS  MathSciNet  Google Scholar 

  • Sheludko, A. (1967). Thin liquid films. Advances in Colloid and Interface Science, 1(4), 391–464.

    Article  Google Scholar 

  • Sonin, A. A., Bonfillon, A., & Langevin, D. (1994). Thinning of soap films – The role of surface viscoelasticity. Journal of Colloid and Interface Science, 162(2), 323–330.

    Article  ADS  Google Scholar 

  • Sonneville-Aubrun, O., Bergeron, V., Gulik-Krzywicki, T., Jonsson, B., Wennerstrom, H., Lindner, P., & Cabane, B. (2000). Surfactant films in biliquid foams. Langmuir, 16(4), 1566–1579.

    Article  Google Scholar 

  • Stebe, K. J., & Maldarelli, C. (1994). Remobilizing surfactant retarded fluid particle interfaces. 2. Controlling the surface mobility at interfaces of solutions containing surface active components. Journal of Colloid and Interface Science, 163(1), 177–189.

    Article  ADS  Google Scholar 

  • Stubenrauch, C., & Khristov, K. (2005). Foams and foam films stabilized by C-n TAB: Influence of the chain length and of impurities. Journal of Colloid and Interface Science, 286(2), 710–718. https://doi.org/10.1016/j.jcis.2005.01.107.

    Article  ADS  Google Scholar 

  • Stubenrauch, C., Rojas, O. J., Schlarmann, J., & Claesson, P. M. (2004). Interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl Ether C12E6 and the origin of surface charges at the air/water interface. Langmuir, 20(12), 4977–4988. https://doi.org/10.1021/la0304060.

    Article  Google Scholar 

  • Suja, V. C., Kar, A., Cates, W., Remmert, S. M., Savage, P. D., & Fuller, G. G. (2018). Evaporation-induced foam stabilization in lubricating oils. Proceedings of the National Academy of Sciences of the United States of America, 115(31), 7919–7924. https://doi.org/10.1073/pnas.1805645115.

    Article  ADS  Google Scholar 

  • Tambe, D. E., & Sharma, M. M. (1991). Hydrodynamics of thin liquid-films bounded by viscoelastic interfaces. Journal of Colloid and Interface Science, 147(1), 137–151. https://doi.org/10.1016/0021-9797(91)90142-u.

    Article  ADS  Google Scholar 

  • Tcholakova, S., Denkov, N. D., & Lips, A. (2008). Comparison of solid particles, globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical Physics, 10(12), 1608–1627.

    Article  Google Scholar 

  • Traykov, T. T., Manev, E. D., & Ivanov, I. B. (1977). Hydrodynamics of thin liquid-films – Experimental investigation of effect of surfactants on drainage of emulsion films. International Journal of Multiphase Flow, 3(5), 485–494. https://doi.org/10.1016/0301-9322(77)90024-6.

    Article  Google Scholar 

  • Vakarelski, I. U., Manica, R., Tang, X. S., O’Shea, S. J., Stevens, G. W., Grieser, F., Dagastine, R., & Chan, D. Y. C. (2010). Dynamic interactions between microbubbles in water. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11177–11182. https://doi.org/10.1073/pnas.1005937107.

    Article  ADS  Google Scholar 

  • van Nierop, E. A., Scheid, B., & Stone, H. A. (2008). On the thickness of soap films: An alternative to Frankel’s law. Journal of Fluid Mechanics, 602, 119–127. https://doi.org/10.1017/s0022112008000955.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Velev, O. D., Constantinides, G. N., Avraam, D. G., Payatakes, A. C., & Borwankar, R. P. (1995). Investigation of thin liquid films of small diameters and high capillary pressures by a miniaturized cell. Journal of Colloid and Interface Science, 175(1), 68–76.

    Article  ADS  Google Scholar 

  • Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the stability of lyophobic colloids. Amsterdam: Elsevier.

    Google Scholar 

  • von Klitzing, R., Espert, A., Asnacios, A., Hellweg, T., Colin, A., & Langevin, D. (1999). Forces in foam films containing polyelectrolyte and surfactant. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 149(1–3), 131–140.

    Google Scholar 

  • Vrij, A. (1966). Possible mechanism for spontaneous rupture of thin free liquid films. Discussions of the Faraday Society, 42, 23–33.

    Article  Google Scholar 

  • Yaminsky, V. V., Ohnishi, S., Vogler, E. A., & Horn, R. G. (2010a). Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions. Langmuir, 26(11), 8061–8074. https://doi.org/10.1021/la904481d.

    Article  Google Scholar 

  • Yaminsky, V. V., Ohnishi, S., Vogler, E. A., & Horn, R. G. (2010b). Stability of aqueous films between bubbles. Part 2. Effects of trace impurities and evaporation. Langmuir, 26(11), 8075–8080. https://doi.org/10.1021/la904482n.

    Article  Google Scholar 

  • Zhang, Y. R., & Sharma, V. (2015). Domain expansion dynamics in stratifying foam films: Experiments. Soft Matter, 11(22), 4408–4417. https://doi.org/10.1039/c5sm00066a.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langevin, D. (2020). Thin Liquid Films. In: Emulsions, Microemulsions and Foams. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-55681-5_2

Download citation

Publish with us

Policies and ethics