Nonlinear Circuits and Systems with Memristors pp 343-372 | Cite as
Memristor Cellular Neural Networks Computing in the Flux-charge Domain
Chapter
First Online:
- 103 Downloads
Abstract
A memristor is a nonlinear device obeying Ohm’s law but, unlike a resistor, the memristor resistance, also called memristance, depends upon the history of the voltage applied or the current flowing through it. A memristor is then both a nonlinear and a memory element in the (v, i)-domain. Another unique property is nonvolatility, namely, when current (or voltage) is turned off, the memristor can keep in memory the final value of charge, flux, or memristance, thereafter (see Chap. 2).
References
- 1.L. Chua, G. Sirakoulis, A. Adamatzky (eds.), Handbook of Memristor Networks, vol. 1 and 2 (Springer, New York, 2019)Google Scholar
- 2.H. Kim, M. Sah, C. Yang, T. Roska, L.O. Chua, Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRefGoogle Scholar
- 3.H. Kim, M. Sah, C. Yang, T. Roska, L.O. Chua, Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuits Syst. I. Regul. Pap. 59(1), 148–158 (2012)MathSciNetCrossRefGoogle Scholar
- 4.M. Sah, H. Kim, L.O. Chua, Brains are made of memristors. IEEE Circuits Syst. Mag. 14(1), 12–36 (2014)CrossRefGoogle Scholar
- 5.R. Stanley Williams, What’s next? [The end of Moore’s law]. Comput. Sci. Eng. 19(2), 7–13 (2017)CrossRefGoogle Scholar
- 6.M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22 (2018)Google Scholar
- 7.O. Krestinskaya, A.P. James, L.O. Chua, Neuromemristive circuits for edge computing: a review. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 4–23 (2020). https://doi.org/10.1109/TNNLS.2019.2899262 MathSciNetCrossRefGoogle Scholar
- 8.L.O. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)MathSciNetCrossRefGoogle Scholar
- 9.L.O. Chua, T. Roska, Cellular Neural Networks and Visual Computing: Foundation and Applications (Cambridge University Press, Cambridge, 2005)Google Scholar
- 10.D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)ADSCrossRefGoogle Scholar
- 11.Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)Google Scholar
- 12.R. Stanley Williams, How we found the missing memristor. IEEE Spectr. 45(12), 28–35 (2008)CrossRefGoogle Scholar
- 13.F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I. Regul. Pap. 59(11), 2713–2726 (2012)MathSciNetCrossRefGoogle Scholar
- 14.D. Biolek, Z. Biolek, V. Biolkova, Z. Kolka, Reliable modeling of ideal generic memristors via state-space transformation. Radioengineering 24(2), 393–407 (2015)CrossRefGoogle Scholar
- 15.L.O. Chua, L. Yang, Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(10), 1273–1290 (1988)MathSciNetCrossRefGoogle Scholar
- 16.M. Hirsch, Convergent activation dynamics in continuous time networks. Neural Netw. 2, 331–349 (1989)CrossRefGoogle Scholar
- 17.H.K. Khalil, Nonlinear Systems (Prentice Hall, Upper Saddle River, 2002)Google Scholar
- 18.J.K. Hale, Ordinary Differential Equations (Wiley Interscience, New York, 1969)zbMATHGoogle Scholar
- 19.M. Di Marco, M. Forti, L. Pancioni, Complete stability of feedback CNNs with dynamic memristors and second-order cells. Int. J. Circuit Theory Appl. 44, 1959–1981 (2016)CrossRefGoogle Scholar
- 20.L. Kék, K. Karacs, T. Roska, Cellular wave computing library (templates, algorithms, and programs). Version 2.1, in Research report of Cellular Sensory and Wave Computing Laboratory CSW-1-2007 (2007)Google Scholar
- 21.M. Di Marco, M. Forti, L. Pancioni, Convergence and multistability of nonsymmetric cellular neural networks with memristors. IEEE Trans. Cybern. 47(10), 2970–2983 (2017)CrossRefGoogle Scholar
- 22.M. Di Marco, M. Forti, L. Pancioni, New conditions for global asymptotic stability of memristor neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 1822–1834 (2018)MathSciNetCrossRefGoogle Scholar
- 23.M. Di Marco, M. Forti, L. Pancioni, Stability of memristor neural networks with delays operating in the flux-charge domain. J. Franklin Inst. 355(12), 5135–5162 (2018)MathSciNetCrossRefGoogle Scholar
- 24.R. Tetzlaff, A. Ascoli, I. Messaris, L.O. Chua, Theoretical foundations of memristor cellular nonlinear networks: memcomputing with bistable-like memristors. IEEE Trans. Circuits Syst. I. Regul. Pap. 67(2), 502–515 (2020)MathSciNetCrossRefGoogle Scholar
- 25.A. Ascoli, I. Messaris, R. Tetzlaff, L.O. Chua, Theoretical foundations of memristor cellular nonlinear networks: stability analysis with dynamic memristors. IEEE Trans. Circuits Syst. I: Regul. Pap. 67(4), 1389–1401 (2020)MathSciNetCrossRefGoogle Scholar
- 26.A. Ascoli, R. Tetzlaff, S.-M. Kang, L.O. Chua, Theoretical foundations of memristor cellular nonlinear networks: a DRM2-based method to design memcomputers with dynamic memristors. IEEE Trans. Circuits Syst. I: Regul. Pap. 67(8), 2753–2766 (2020). https://doi.org/10.1109/TCSI.2020.2978460 CrossRefGoogle Scholar
- 27.Y.V. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)Google Scholar
- 28.T. Roska, L.O. Chua, The CNN universal machine: an analogic array computer. IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process. 40(3):163–173 (1993)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2021