Nonlinear Circuits and Systems with Memristors pp 319-342 | Cite as
Complex Dynamics and Synchronization Phenomena in Arrays of Memristor Oscillators
- 110 Downloads
Abstract
A great deal of efforts have been traditionally devoted in circuit theory to analyze nonstationary steady-state behaviors in networks obtained by locally coupled arrays of simple dynamic circuits (also named cells, oscillators, units, etc.). These arrays can be thought of as a bio-inspired circuit model of complex nonlinear phenomena observable in nature with potential applications in signal processing and computing systems. In fact, on one hand, they are a mean for reproducing, analyzing, and understanding spatiotemporal nonlinear phenomena displayed by spatially extended networks found in such diverse fields as electrical engineering, computer science, biology, and physics. On the other hand, complex spatiotemporal dynamics including chaos are potentially useful for developing future analogue computing systems. Recent studies have shown for instance that chaos can play a crucial role in searching for the global solution of combinatorial optimization problems and chaotic relaxation oscillators with memristors have been used to boot efficiency and accuracy of Hopfield-like computing networks.
References
- 1.L.O. Chua (Ed.), Special issue on nonlinear waves, patterns and spatio-temporal chaos in dynamic arrays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(10), 557–823 (1995)Google Scholar
- 2.S. Kumar, J.P. Strachan, R. Stanley Williams, Chaotic dynamics in nanoscale NbO 2 Mott memristors for analogue computing. Nature 548(7667), 318 (2017)Google Scholar
- 3.A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12 (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
- 4.A.-L. Barabási, Linked: The New Science of Networks (American Association of Physics Teachers, College Park, 2003)Google Scholar
- 5.G.V. Osipov, V.D. Shalfeev, The evolution of spatio-temporal disorder in a chain of unidirectionally-coupled Chua’s circuits. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 42(10), 687–692 (1995)CrossRefGoogle Scholar
- 6.M.J. Ogorzalek, Z. Galias, A.M. Dabrowski, W.R. Dabrowski, Chaotic waves and spatio-temporal patterns in large arrays of doubly-coupled Chua’s circuits. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 42(10), 706–714 (1995)CrossRefGoogle Scholar
- 7.F. Kavaslar, C. Guzelis, A computer-assisted investigation of a 2-D array of Chua’s circuits. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 42(10), 721–735 (1995)CrossRefGoogle Scholar
- 8.E. Sánchez, M.A. Matías, V. Pérez-Muñuzuri, Chaotic synchronization in small assemblies of driven Chua’s circuits. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 47(5), 644–654 (2000)CrossRefGoogle Scholar
- 9.M. de Magistris, M. di Bernardo, E. Di Tucci, S. Manfredi, Synchronization of networks of non-identical Chua’s circuits: analysis and experiments. IEEE Trans. Circ. Syst. I Regul. Pap. 59(5), 1029–1041 (2012)MathSciNetCrossRefGoogle Scholar
- 10.A. Bogojeska, M. Mirchev, I. Mishkovski, L. Kocarev, Synchronization and consensus in state-dependent networks. IEEE Trans. Circ. Syst. I Regul. Pap. 61(2), 522–529 (2014)CrossRefGoogle Scholar
- 11.H. Liu, M. Cao, C.W. Wu, Coupling strength allocation for synchronization in complex networks using spectral graph theory. IEEE Trans. Circ. Syst. I Regul. Pap. 61(5), 1520–1530 (2014)MathSciNetCrossRefGoogle Scholar
- 12.W.K. Wong, W. Zhang, Y. Tang, X. Wu, Stochastic synchronization of complex networks with mixed impulses. IEEE Trans. Circ. Syst. I Regul. Pap. 60(10), 2657–2667 (2013)MathSciNetCrossRefGoogle Scholar
- 13.D. Kim, M. Jin, P.H. Chang, Control and synchronization of the generalized Lorenz system with mismatched uncertainties using backstepping technique and time-delay estimation. Int. J. Circuit Theory Appl. (2017). https://doi.org/10.1002/cta.2353
- 14.L.O. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
- 15.A. Ascoli, V. Lanza, F. Corinto, R. Tetzlaff, Synchronization conditions in simple memristor neural networks. J. Franklin Inst. 352(8), 3196–3220 (2015)MathSciNetCrossRefGoogle Scholar
- 16.V. Erokhin, T. Berzina, P. Camorani, A. Smerieri, D. Vavoulis, J. Feng, M.P. Fontana, Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience 1(1–2), 24–30 (2011)CrossRefGoogle Scholar
- 17.Z. Wang, S. Ambrogio, S. Balatti, D. Ielmini, A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems. Front. Neurosci. 8, (2014)Google Scholar
- 18.A. Buscarino, C. Corradino, L. Fortuna, M. Frasca, L.O. Chua, Turing patterns in memristive cellular nonlinear networks. IEEE Trans. Circuits Syst. I Regul. Pap. 63(8), 1222–1230 (2016)MathSciNetCrossRefGoogle Scholar
- 19.L.V. Gambuzza, A. Buscarino, L. Fortuna, M. Frasca, Memristor-based adaptive coupling for consensus and synchronization. IEEE Trans. Circ. Syst. I Regul. Pap. 62(4), 1175–1184 (2015)MathSciNetCrossRefGoogle Scholar
- 20.E. Bilotta, F. Chiaravalloti, P. Pantano, Spontaneous synchronization in two mutually coupled memristor-based Chua’s circuits: numerical investigations. Math. Problems Eng. 2014, 594962 (2014)CrossRefGoogle Scholar
- 21.E. Bilotta, F. Chiaravalloti, P. Pantano, Synchronization and waves in a ring of diffusively coupled memristor-based Chua’s circuits. Acta Appl. Math. 132(1), 83–94 (2014)MathSciNetCrossRefGoogle Scholar
- 22.V.-T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top 225(1), 127–136 (2016)CrossRefGoogle Scholar
- 23.J. Ma, F. Wu, G. Ren, J. Tang, A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)MathSciNetzbMATHGoogle Scholar
- 24.Q. Xu, Y. Lin, B. Bao, M. Chen, Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 25.B. Bao, T. Jiang, G. Wang, P. Jin, H. Bao, M. Chen, Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 1–15 (2017)Google Scholar
- 26.M. Gilli, F. Corinto, P. Checco, Periodic oscillations and bifurcations in cellular nonlinear networks. IEEE Trans. Circ. Syst. I Regul. Pap. 51(5), 948–962 (2004)MathSciNetCrossRefGoogle Scholar
- 27.W. Lu, T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems. Phys. D Nonlinear Phenom. 213(2), 214–230 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 28.C.W. Wu, L.O. Chua, Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 42(8), 430–447 (1995)MathSciNetCrossRefGoogle Scholar
- 29.M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
- 30.B.-C. Bao, Q. Xu, H. Bao, M. Chen, Extreme multistability in a memristive circuit. Electron. Lett. 52(12), 1008–1010 (2016)ADSCrossRefGoogle Scholar
- 31.B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)CrossRefGoogle Scholar
- 32.M.E. Yalcin, Dynamic behavior of 1-D array of the memristively-coupled Chua’s circuits, in 2013 8th International Conference on Electrical and Electronics Engineering (ELECO) (IEEE, Piscataway, 2013), pp. 13–16CrossRefGoogle Scholar
- 33.L. Ponta, V. Lanza, M. Bonnin, F. Corinto, Emerging dynamics in neuronal networks of diffusively coupled hard oscillators. Neural Netw. 24(5), 466–475 (2011)CrossRefGoogle Scholar
- 34.V. Lanza, L. Ponta, M. Bonnin, F. Corinto, Multiple attractors and bifurcations in hard oscillators driven by constant inputs. Int. J. Bifurc. Chaos 22(11), 1250267 (2012)Google Scholar
- 35.R. Genesio, A. Tesi, Distortion control of chaotic systems: the Chua’s circuit. J. Circuits Syst. Comput. 3(1), 151–171 (1993)MathSciNetCrossRefGoogle Scholar
- 36.F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks, vol. 126 (Springer, Berlin, 2012)Google Scholar