Pulse Programming of Memristor Circuits

  • Fernando Corinto
  • Mauro Forti
  • Leon O. Chua


The main contributions in this chapter are as follows:
  1. (a)

    we identify a wide class of memristor circuits, of any order and with any number of flux- or charge-controlled memristors, and introduce a systematic method for writing in an explicit way the SEs, both in the (φ, q) and in the (v, i)-domain. The conditions for the existence of the SEs for such class are easily checkable (usually by inspection), since they are couched in topological terms. The techniques overcome drawbacks of the analogous technique described in Chap.  5, that was able in general only to yield the SE formulation in implicit form.

  2. (b)

    The obtained SEs have a relatively simple mathematical structure and, in the autonomous case, under certain assumptions, a systematic method is introduced to identify and write analytically the invariant manifolds, to show the coexistence of different dynamics and to find the reduced-order dynamics on each invariant manifold.



  1. 1.
    M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Riaza, C. Tischendorf, Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl. 39(6), 607–627 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Ascoli, F. Corinto, R. Tetzlaff, Generalized boundary condition memristor model. Int. J. Circuit Theory Appl. 44(1), 60–84 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Ma, F. Wu, G. Ren, J. Tang, A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    B. Bao, T. Jiang, Q. Xu, M. Chen, H. Wu, Y. Hu, Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Buscarino, C. Corradino, L. Fortuna, M. Frasca, L.O. Chua, Turing patterns in memristive cellular nonlinear networks. IEEE Trans. Circuits Syst. I Regul. Pap. 63(8), 1222–1230 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V.-T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top. 225(1), 127–136 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Riaza, Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math. 72(3), 877–896 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)CrossRefGoogle Scholar
  10. 10.
    Q. Li, S. Hu, S. Tang, G. Zeng, Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172–1188 (2014)CrossRefGoogle Scholar
  11. 11.
    F. Corinto, A. Ascoli, M. Gilli, Analysis of current–voltage characteristics for memristive elements in pattern recognition systems. Int. J. Circuit Theory Appl. 40(12), 1277–1320 (2012)CrossRefGoogle Scholar
  12. 12.
    L.O. Chua, Dynamic nonlinear networks: state-of-the-art. IEEE Trans. Circuits Syst. 27(11), 1059–1087 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H.C. So, On the hybrid description of a linear n–port resulting from the extraction of arbitrarily specified elements. IEEE Trans. Circuit Theory CT–12(3), 381–387 (1965)Google Scholar
  14. 14.
    F. Zhang, The Schur Complement and Its Applications, vol. 4 (Springer, Berlin, 2006)Google Scholar
  15. 15.
    F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Topics Circuits Syst. 5(2), 123–132 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kumar, J.P. Strachan, R. Stanley Williams, Chaotic dynamics in nanoscale NbO 2 Mott memristors for analogue computing. Nature 548(7667), 318 (2017)Google Scholar
  17. 17.
    M. Itoh , L.O. Chua, Star cellular neural networks for associative and dynamic memories. Int. J. Bifurc. Chaos 14(5), 1725–1772 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Corinto, M. Gilli, T. Roska, On full-connectivity properties of locally connected oscillatory networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(5), 1063–1075 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Fernando Corinto
    • 1
  • Mauro Forti
    • 2
  • Leon O. Chua
    • 3
  1. 1.Department of Electronics & TelecommunicationsPolitecnico di TorinoTorinoItaly
  2. 2.Department of Information Engineering and MathematicsUniversity of SienaSienaItaly
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations