Nonlinear Circuits and Systems with Memristors pp 219-269 | Cite as

# Memristor Circuits: Invariant Manifolds, Coexisting Attractors, Extreme Multistability, and Bifurcations Without Parameters

- 110 Downloads

## Abstract

Chapter 5 has developed the flux-charge analysis method (FCAM) for the analysis of a class \(\mathcal {L}\mathcal {M}\) of memristor circuits containing memristors, linear resistors, inductors, capacitors, and independent voltage and current sources. The formulation of circuit equations (DAEs and SEs) has been provided in the (*φ*, *q*)-domain and in the (*v*, *i*)-domain and relationships between the analysis in the two domains have been discussed. A fundamental property is that the SE description in the (*φ*, *q*)-domain of a circuit in \(\mathcal {L}\mathcal {M}\) has a lower order with respect to the corresponding description in the (*v*, *i*)-domain, so that it is expected that the dynamic analysis in the former domain is simpler. The goal of this chapter is to highlight some main advantages of FCAM by studying the dynamics of a number of low-order autonomous memristor circuits in the (*φ*, *q*)-domain, namely, circuits described by a first-order SE in the (*φ*, *q*)-domain, oscillatory circuits described by a second-order SE in the (*φ*, *q*)-domain, and chaotic circuits described by a third-order SE in the (*φ*, *q*)-domain. Such a study permits to show that memristor circuits display a number of fundamental peculiar dynamic features. First of all, the state space in the (*v*, *i*)-domain can be foliated in a continuum of *invariant manifolds*, thus implying the *coexistence of infinitely many different reduced-order dynamics and attractors*. Moreover, such circuits display bifurcations due to changing the initial conditions for a fixed set of circuit parameters that are named *bifurcations without parameters*.

## References

- 1.H.K. Khalil,
*Nonlinear Systems*(Prentice Hall, Englewood Cliffs, 2002)Google Scholar - 2.L.O. Chua, Dynamic nonlinear networks: state-of-the-art. IEEE Trans. Circuits Syst.
**27**(11), 1059–1087 (1980)MathSciNetCrossRefGoogle Scholar - 3.T. Matsumoto, L. Chua, A. Makino, On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks. IEEE Trans. Circuits Syst.
**26**(10), 828–845 (1979)MathSciNetCrossRefGoogle Scholar - 4.V.I. Arnold,
*Geometrical Methods in the Theory of Ordinary Differential Equations*(Springer, New York, 1988)CrossRefGoogle Scholar - 5.O. Merino, A short history of complex numbers. University of Rhode Island, Kingston (2006)Google Scholar
- 6.B. Fiedler, S. Liebscher, J.C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory. J. Differ. Equ.
**167**(1), 16–35 (2000)ADSMathSciNetCrossRefGoogle Scholar - 7.M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos
**18**(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar - 8.J.P. Aubin, A. Cellina,
*Differential Inclusions. Set-Valued Maps and Viability Theory*(Springer, Berlin, 1984)Google Scholar - 9.A. Mees, L. Chua, The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circuits Syst.
**26**(4), 235–254 (1979)MathSciNetCrossRefGoogle Scholar - 10.C.R. Hens, R. Banerjee, U. Feudel, S.K. Dana, How to obtain extreme multistability in coupled dynamical systems. Phys. Rev. E
**85**(3), 035202 (2012)Google Scholar - 11.M. da Cruz Scarabello, M. Messias, Bifurcations leading to nonlinear oscillations in a 3D piecewise linear memristor oscillator. Int. J. Bifurc. Chaos
**24**(1), 1430001 (2014)Google Scholar - 12.M. Messias, C. Nespoli, V.A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurcation Chaos
**20**(2), 437–450 (2010)ADSMathSciNetCrossRefGoogle Scholar - 13.A. Amador, E. Freire, E. Ponce, J. Ros, On discontinuous piecewise linear models for memristor oscillators. Int. J. Bifurcation Chaos
**27**(6), 1730022 (2017)Google Scholar - 14.F. Corinto, A. Ascoli, M. Gilli, Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I: Regul. Pap.
**58**(6), 1323–1336 (2011)MathSciNetCrossRefGoogle Scholar - 15.M. Gilli, F. Corinto, P. Checco, Periodic oscillations and bifurcations in cellular nonlinear networks. IEEE Trans. Circ. Syst. I: Regul. Pap.
**51**(5), 948–962 (2004)MathSciNetCrossRefGoogle Scholar - 16.M. Di Marco, M. Forti, G. Innocenti, A. Tesi, Harmonic balance method to analyze bifurcations in memristor oscillatory circuits. Int. J. Circuit Theory Appl.
**46**(1), 66–83 (2018)CrossRefGoogle Scholar - 17.G. Innocenti, M. Di Marco, M. Forti, A. Tesi, Prediction of period doubling bifurcations in harmonically forced memristor circuits. Nonlinear Dyn.
**96**(2), 1169–1190 (2019)CrossRefGoogle Scholar - 18.B.-C. Bao, Q. Xu, H. Bao, M. Chen, Extreme multistability in a memristive circuit. Electron. Lett.
**52**(12), 1008–1010 (2016)ADSCrossRefGoogle Scholar - 19.A. Buscarino, C. Corradino, L. Fortuna, M. Frasca, L.O. Chua, Turing patterns in memristive cellular nonlinear networks. IEEE Trans. Circuits Syst. I: Regul. Pap.
**63**(8), 1222–1230 (2016)MathSciNetCrossRefGoogle Scholar - 20.A.I. Ahamed, M. Lakshmanan, Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurcation Chaos
**23**(6), 1350098 (2013)Google Scholar - 21.V.-T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top.
**225**(1), 127–136 (2016)CrossRefGoogle Scholar - 22.B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos
**21**(9), 2629–2645 (2011)CrossRefGoogle Scholar - 23.Q. Li, S. Hu, S. Tang, G. Zeng, Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl.
**42**(11), 1172–1188 (2014)CrossRefGoogle Scholar - 24.R. Riaza, C. Tischendorf, Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl.
**39**(6), 607–627 (2011)CrossRefGoogle Scholar - 25.R. Riaza, Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math.
**72**(3), 877–896 (2012)MathSciNetCrossRefGoogle Scholar - 26.F. Corinto, A. Ascoli, M. Gilli, Analysis of current–voltage characteristics for memristive elements in pattern recognition systems. Int. J. Circuit Theory Appl.
**40**(12), 1277–1320 (2012)CrossRefGoogle Scholar - 27.B.C. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals
**94**, 102–111 (2017)ADSMathSciNetCrossRefGoogle Scholar - 28.H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul.
**57**, 264–275 (2018)ADSMathSciNetCrossRefGoogle Scholar - 29.A. Ascoli, R. Tetzlaff, Z. Biolek, Z. Kolka, The art of finding accurate memristor model solutions. IEEE J. Emerg. Sel. Top. Circuits Syst.
**5**(2), 133–142 (2015)ADSCrossRefGoogle Scholar