Advertisement

Flux-Charge Analysis Method of Memristor Circuits

  • Fernando Corinto
  • Mauro Forti
  • Leon O. Chua
Chapter
  • 101 Downloads

Abstract

Let us consider a relevant class of nonlinear networks, denoted by \(\mathcal {L}\mathcal {M}\), containing at least one memristor in addition to ideal (linear) resistors, inductors, capacitors, and independent voltage or currents sources. Thus, \(\mathcal {L}\mathcal {M}\) describes nonlinear dynamic networks including ideal memristors.

References

  1. 1.
    F. Corinto, M. Forti, Memristor circuits: flux–charge analysis method. IEEE Trans. Circuits Syst. I Regul. Pap. 63(11), 1997–2009 (2016)CrossRefGoogle Scholar
  2. 2.
    F. Corinto, M. Forti, Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 64(6), 1540–1551 (2017)CrossRefGoogle Scholar
  3. 3.
    F. Corinto, M. Forti, Memristor circuits: pulse programming via invariant manifolds. IEEE Trans. Circuits Syst. I Regul. Pap. 65(4), 1327–1339 (2018)CrossRefGoogle Scholar
  4. 4.
    L.O. Chua, Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)Google Scholar
  5. 5.
    M. Mansfield, C. O’sullivan, Understanding Physics (Wiley, Hoboken, 2011)zbMATHGoogle Scholar
  6. 6.
    F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 5(2), 123–132 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    L.O. Chua, Introduction to Nonlinear Network Theory (McGraw-Hill, New York, 1969)Google Scholar
  8. 8.
    L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)zbMATHGoogle Scholar
  9. 9.
    P.W. Tuinenga, SPICE: A Guide to Circuit Simulation and Analysis Using PSpice, vol. 2 (Prentice Hall, Englewood Cliffs, 1995)Google Scholar
  10. 10.
    R. Riaza, DAEs in circuit modelling: a survey, in Surveys in Differential-Algebraic Equations I (Springer, Berlin, 2013), pp. 97–136zbMATHGoogle Scholar
  11. 11.
    M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Hasler, State equations for active circuits with memristors, in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (World Scientific, Singapore, 2013), pp. 518–528CrossRefGoogle Scholar
  13. 13.
    A. Opal, J. Vlach, Consistent initial conditions of nonlinear networks with switches. IEEE Trans. Circuits Syst. 38(7), 698–710 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Fernando Corinto
    • 1
  • Mauro Forti
    • 2
  • Leon O. Chua
    • 3
  1. 1.Department of Electronics & TelecommunicationsPolitecnico di TorinoTorinoItaly
  2. 2.Department of Information Engineering and MathematicsUniversity of SienaSienaItaly
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations