Nonlinear Circuits and Systems with Memristors pp 163-217 | Cite as
Flux-Charge Analysis Method of Memristor Circuits
Chapter
First Online:
- 101 Downloads
Abstract
Let us consider a relevant class of nonlinear networks, denoted by \(\mathcal {L}\mathcal {M}\), containing at least one memristor in addition to ideal (linear) resistors, inductors, capacitors, and independent voltage or currents sources. Thus, \(\mathcal {L}\mathcal {M}\) describes nonlinear dynamic networks including ideal memristors.
References
- 1.F. Corinto, M. Forti, Memristor circuits: flux–charge analysis method. IEEE Trans. Circuits Syst. I Regul. Pap. 63(11), 1997–2009 (2016)CrossRefGoogle Scholar
- 2.F. Corinto, M. Forti, Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 64(6), 1540–1551 (2017)CrossRefGoogle Scholar
- 3.F. Corinto, M. Forti, Memristor circuits: pulse programming via invariant manifolds. IEEE Trans. Circuits Syst. I Regul. Pap. 65(4), 1327–1339 (2018)CrossRefGoogle Scholar
- 4.L.O. Chua, Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)Google Scholar
- 5.M. Mansfield, C. O’sullivan, Understanding Physics (Wiley, Hoboken, 2011)zbMATHGoogle Scholar
- 6.F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 5(2), 123–132 (2015)ADSCrossRefGoogle Scholar
- 7.L.O. Chua, Introduction to Nonlinear Network Theory (McGraw-Hill, New York, 1969)Google Scholar
- 8.L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)zbMATHGoogle Scholar
- 9.P.W. Tuinenga, SPICE: A Guide to Circuit Simulation and Analysis Using PSpice, vol. 2 (Prentice Hall, Englewood Cliffs, 1995)Google Scholar
- 10.R. Riaza, DAEs in circuit modelling: a survey, in Surveys in Differential-Algebraic Equations I (Springer, Berlin, 2013), pp. 97–136zbMATHGoogle Scholar
- 11.M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
- 12.M. Hasler, State equations for active circuits with memristors, in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (World Scientific, Singapore, 2013), pp. 518–528CrossRefGoogle Scholar
- 13.A. Opal, J. Vlach, Consistent initial conditions of nonlinear networks with switches. IEEE Trans. Circuits Syst. 38(7), 698–710 (1991)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2021