Nonlinear Dynamics and Bifurcations in Autonomous RLC Circuits

  • Fernando Corinto
  • Mauro Forti
  • Leon O. Chua


In this brief chapter we discuss some fundamental dynamic phenomena that can be observed in nonlinear circuits containing time-invariant resistors, inductors, capacitors, and dc sources (autonomous RLC circuits). In Chap.  6 we will study analogous dynamic phenomena for nonlinear circuits containing also memristors. While in first-order autonomous circuits any bounded solution converges to an equilibrium point (EP), second-order circuits with locally active nonlinear resistors can display nonvanishing oscillations, as negative resistance oscillators belonging to the class of Van der Pol oscillators. More complex dynamics, as chaotic dynamics, can be observed in third-order autonomous circuits, the most famous example being Chua’s oscillator.


  1. 1.
    L.O. Chua, Global unfolding of Chua’s circuit. IEICE Trans. Fundam E76-A(5), 948–962 (1993)Google Scholar
  2. 2.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)CrossRefGoogle Scholar
  3. 3.
    S.H. Strogatz, Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, Boca Raton, 2018)CrossRefGoogle Scholar
  4. 4.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, vol.112 (Springer, Berlin, 2013)Google Scholar
  5. 5.
    H.K. Khalil, Nonlinear Systems (Prentice Hall, Englewood Cliffs, 2002)Google Scholar
  6. 6.
    L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)zbMATHGoogle Scholar
  7. 7.
    L.O. Chua, Dynamic nonlinear networks: state-of-the-art. IEEE Trans. Circuits Syst. 27(11), 1059–1087 (1980)MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Chua, Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. 27(11), 1014–1044 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.K. Hale, Ordinary Differential Equations (Wiley, New York, 1969)zbMATHGoogle Scholar
  10. 10.
    M.M. Peixoto, Structural stability on two-dimensional manifolds Topology 1(2), 101–120 (1962)Google Scholar
  11. 11.
    L. Chua, M. Komuro, T. Matsumoto, The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    L.O. Chua, The genesis of Chua’s circuit. Archiv Elektronik Ubertragungstechnik 46(4), 250–257 (1992)Google Scholar
  13. 13.
    R. Madan, Special issue on Chua’s circuit: a paradigm for chaos, part I introduction and applications. J. Circuit Syst. Comput. 3, (1993)Google Scholar
  14. 14.
    E. Bilotta, P. Pantano, A Gallery of Chua Attractors, vol. 61 (World Scientific, Singapore, 2008)CrossRefGoogle Scholar
  15. 15.
    L. Pivka, C.W. Wu, A. Huang, Chua’s oscillator: a compendium of chaotic phenomena. J. Franklin Inst. 331(6), 705–741 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Yang, A survey of chaotic secure communication systems. Int. J. Comput. Cognit. 2(2), 81–130 (2004)Google Scholar
  17. 17.
    L.O. Chua, R.N. Madan, T. Matsumoto, (Eds.), Special Section On: Chaotic Systems. Proceedings of IEEE (1987)Google Scholar
  18. 18.
    L.O. Chua (Ed.), Special issue on nonlinear waves, patterns and spatio-temporal chaos in dynamic arrays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(10), 557–823 (1995)Google Scholar
  19. 19.
    A. Mees, L. Chua, The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circuits Syst. 26(4), 235–254 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Fernando Corinto
    • 1
  • Mauro Forti
    • 2
  • Leon O. Chua
    • 3
  1. 1.Department of Electronics & TelecommunicationsPolitecnico di TorinoTorinoItaly
  2. 2.Department of Information Engineering and MathematicsUniversity of SienaSienaItaly
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations