Advertisement

Extended Memristor Devices

  • Fernando Corinto
  • Mauro Forti
  • Leon O. Chua
Chapter
  • 122 Downloads

Abstract

Memristor devices embedded in pioneering future computing platforms are believed to represent one of the most promising key-enabling technologies for the treatment of massive amount of data. The ideal memristor, a two-terminal circuit element described by a nonlinear relationship between the time integrals of current and voltage (i.e., the current and voltage momenta, a.k.a. charge and flux), was theoretically envisioned by Chua back in 1971 in the seminal paper.

References

  1. 1.
    L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, T. Mikolajick, Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I. Regul. Pap. 62(4), 1165–1174 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Erokhin, T. Berzina, P. Camorani, A. Smerieri, D. Vavoulis, J. Feng, M.P. Fontana, Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience 1(1–2), 24–30 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Kumar, J.P. Strachan, R. Stanley Williams, Chaotic dynamics in nanoscale NbO 2 Mott memristors for analogue computing. Nature 548(7667), 318 (2017)Google Scholar
  7. 7.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Chua, Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Select. Top. Circuits Syst. 5(2), 123–132 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    H.K. Khalil, Nonlinear Systems (Prentice Hall, Upper Saddle River, 2002)Google Scholar
  11. 11.
    D. Panda, P.P. Sahu, T. Y. Tseng, A collective study on modeling and simulation of resistive random access memory. Nanoscale Res. Lett. 13(1), 8 (2018)Google Scholar
  12. 12.
    F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I. Regul. Pap. 59(11), 2713–2726 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Secco, F. Corinto, A. Sebastian, Flux-charge memristor model for phase change memory. IEEE Trans. Circuits Syst. II. Expr. Briefs 65(1), 111–114 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Joshua Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R. Stanley Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429 (2008)Google Scholar
  15. 15.
    S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu, Y. Liu, T.P. Chen, Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotechnol. Lett. 6(9), 729–757 (2014)CrossRefGoogle Scholar
  16. 16.
    D. Biolek, M. Di Ventra, Y.V. Pershin, Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4), 945 (2013)Google Scholar
  17. 17.
    L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)zbMATHGoogle Scholar
  18. 18.
    I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. Van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    L. Chua, Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. 27(11), 1014–1044 (1980)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)CrossRefGoogle Scholar
  21. 21.
    M.P. Sah, C. Yang, H. Kim, B. Muthuswamy, J. Jevtic, L. Chua, A generic model of memristors with parasitic components. IEEE Trans. Circuits Syst. I. Regul. Pap. 62(3), 891–898 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Fernando Corinto
    • 1
  • Mauro Forti
    • 2
  • Leon O. Chua
    • 3
  1. 1.Department of Electronics & TelecommunicationsPolitecnico di TorinoTorinoItaly
  2. 2.Department of Information Engineering and MathematicsUniversity of SienaSienaItaly
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations