Skip to main content

Epigenetic Mechanisms in Developmental and Seasonal Programs

  • Chapter
  • First Online:
Neuroendocrine Clocks and Calendars

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 10))

  • 448 Accesses

Abstract

Developmental epigenetic modifications generally occur during cellular embryonic differentiation and impart permanent changes that last the individual’s lifespan. It is now recognized that epigenetic modifications also exhibit rhythmic patterns that impact the timing of seasonal transitions in physiology and behaviour. This chapter explores the role of epigenetic modifications during mammalian development and photoperiodic programming of seasonal rhythms, focussing on the molecular and cellular substrates in the hypothalamus that regulate seasonal timing of reproduction. The chapter draws evidence from the well-established literature on genomic imprinting and maternal programming during mammalian development to identify common genomic, molecular and cellular signalling mechanisms. One mechanism common across developmental and seasonal programs that is highlighted is the role of thyroid hormones. Recent data indicate that the epigenetic regulation of thyroid hormone deiodinase enzymes is a critical feature of developmental and seasonal programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Azzi A, Dallman R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA (2014) Circadian behaviour is light-reprogrammed by plastic DNA methylation. Nat Neurosci 17:377–382

    Article  CAS  PubMed  Google Scholar 

  • Azzi A, Evans JA, Leise T, Myung J, Takumi T, Davidson AJ, Brown SA (2017) Network dynamics mediate circadian clock plasticity. Neuron 93:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball GF, Wade J (2013) The value of comparative approaches to our understanding of puberty as illustrated by investigations in birds and reptiles. Horm Behav 64:211–214

    Article  PubMed  Google Scholar 

  • Banks R, Delibegovic M, Stevenson TJ (2016) Triiodothyronine reduces peripheral leukocytes in photo-regressed hamsters. J Biol Rhythm 31:299–307

    Article  CAS  Google Scholar 

  • Bao R, Onishi KG, Tolla E, Ebling FJP, Lewis JE, Barrett PJ, Prendergast BJ, Stevenson TJ (2019) Genome sequencing and transcriptome analyses of the Siberian hamster hypothalamus identify novel mechanisms for seasonal energy balance. Proc Natl Acad Sci U S A 116:13116–13121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. 6:a018382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barton SC, Ferguson-Smith AC, Fundele R, Surani MA (1991) Influence of paternally imprinted genes on development. Development 113:679–687

    CAS  PubMed  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  CAS  PubMed  Google Scholar 

  • Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behaviour: a critical role for the immune system. Front Behav Neurosci 3:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blewitt M, Whitelaw E (2013) The use of mouse models to study epigenetics. Cold Spring Harb Perspect Biol 5:a017939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 36:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    Article  CAS  PubMed  Google Scholar 

  • DeVeale B, van der Kooy D, Babak T (2012) Critical evaluation of imprinted gene expression by RNA-seq: a new perspective. PLoS Biol 8(3):e1002600

    CAS  Google Scholar 

  • Dupre SM (2011) Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology 94:101–112

    Article  CAS  PubMed  Google Scholar 

  • Ebling FJP (2010) Photoperiodic regulation of puberty in seasonal species. Mol Cell Endocrinol 324:95–101

    Article  CAS  PubMed  Google Scholar 

  • Ebling FJP, Lewis JE (2018) Tanycytes and hypothalamic control of energy metabolism. Glia 66:1176–1184

    Article  PubMed  Google Scholar 

  • Eckersley-Maslin MA, Alda-Catalinas C, Reik W (2018) Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 19:436–450

    Article  CAS  PubMed  Google Scholar 

  • Ernst DK, Bentley GE (2016) Neural and neuroendocrine processing of a non-photic cue in an opportunistically breeding songbird. J Exp Biol 219:783–789

    Article  PubMed  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6(1):a018200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  • Ferrón SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Fariñas I, Ferguson-Smith AC (2011) Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:381–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forhead AJ, Fowden AL (2014) Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol 221:R87–R103

    Article  CAS  PubMed  Google Scholar 

  • Freeman DA, Goldman BD (1997a) Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters: the effect of running wheel access on photoperiodic responsiveness. J Biol Rhythm 12:100–109

    Article  CAS  Google Scholar 

  • Freeman DA, Goldman BD (1997b) Photoperiod nonresponsive Siberian hamsters: effect of age on the probability of nonresponsiveness. J Biol Rhythm 12:110–121

    Article  CAS  Google Scholar 

  • Freeman DA, Teubner BJ, Smith CD, Prendergast BJ (2007) Exogenous T3 mimics long day lengths in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 292:R2368–R2372

    Article  CAS  PubMed  Google Scholar 

  • Friesema ECH, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MHA, Kuiper GGJM, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364:1435–1437

    Article  CAS  PubMed  Google Scholar 

  • Hazlerigg DG, Lincoln GA (2011) Hypothesis: cyclical histogenesis is the basis of circannual timing. J Biol Rhythm 26:471–485

    Article  Google Scholar 

  • Johnston JD, Skene DJ (2015) 60 years of neuroendocrinology: regulation of mammalian neuroendocrine physiology and rhythms by melatonin. J Endocrinol 226:T187–T198

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Juss TS, Meddle SL, Servant RS, King VM (1993) Melatonin and photoperiodic time measurement in Japanese quail (Coturnix japonica). Proc Bio Sci 254:21–28

    Article  CAS  Google Scholar 

  • Kelsey G, Bartolomei MS (2012) Imprinted genes … and the number is? PLoS Biol 8(3):e1002601

    CAS  Google Scholar 

  • Kliman RM, Lynch GR (1992) Evidence for genetic variation in the occurrence of the photoresponse of the Djungarian hamster, Phodopus sungorus. J Biol Rhythm 7:161–173

    Article  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  • Laborda J (2000) The role of the epidermal growth-like protein dlk in cell differentiation. Histol Histopathol 15:119–129

    CAS  PubMed  Google Scholar 

  • Langlet F (2014) Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol 26:753–760

    Article  CAS  PubMed  Google Scholar 

  • Lazutkaite G, Solda A, Lossow K, Meyerhof W, Dale N (2017) Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol Metab 6:1480–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JE, Ebling FJP (2017) Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front Neurol 8:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsay KL, Buss C, Wadhwa PD, Entringer S (2019) The interplay between nutrition and stress in pregnancy: implications for fetal programming of brain development. Biol Psychiatry 85:135–149

    Article  PubMed  Google Scholar 

  • Loudon AS, Ihara N, Menaker M (1998) Effects of a circadian mutation on seasonality in Syrian hamsters (Mesocricetus auratus). Proc R Soc B 265:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch GR, Lynch CB, Kliman RM (1989) Genetic analyses of photoresponsiveness in the Djungarian hamster, Phodopus sungorus. J Comp Physiol A 164:475–482

    Article  CAS  PubMed  Google Scholar 

  • Lynch EWJ, Coyle CS, Lorgen M, Campbell E, Bowman A, Stevenson TJ (2016) Cyclical DNA methyltransferase 3a expression is a seasonal and oestrus timer in reproductive tissues. Endocrinology 157:2469–2478

    Article  CAS  PubMed  Google Scholar 

  • Majumdar G, Rani S, Kumar V (2015) Hypothalamic gene switches control transitions between seasonal life history states in a night-migratory photoperiodic songbird. Mol Cell Endocrinol 399:110–121

    Article  CAS  PubMed  Google Scholar 

  • McCann KE, Sinkiewicz DM, Norvelle A, Huhman KL (2017) De novo assembly, annotation and characterization of the whole brain transcriptome of male and female Syrian hamsters. Sci Rep 7:40472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda A, Sousa N (2018) Maternal hormonal milieu influence on fetal brain development. Brain Behav 8:e00920

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra I, Bhardwaj SK, Malik S, Kumar V (2017) Concurrent hypothalamic gene expression under acute and chronic long days: implications for initiation and maintenance of photoperiodic response in migratory songbirds. Mol Cell Endocrinol 439:81–94

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Grossniklaus U (2010) Model organisms—a historical perspective. J Proteome 73:2054–2063

    Article  CAS  Google Scholar 

  • Nadeau JH (2009) Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet 18:R202–R210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322

    Article  CAS  PubMed  Google Scholar 

  • Nakane Y, Yoshimura T (2014) Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci 8:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Yoshimura T (2018) Seasonal rhythms: the role of thyrotropin and thyroid hormones. Thyroid 28:4–10

    Article  CAS  PubMed  Google Scholar 

  • Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649

    Article  CAS  PubMed  Google Scholar 

  • Ono H, Hoshino Y, Yasuo S, Watanbe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T (2008) Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci 105:18238–18242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Saez JC, Garcia MA (2012) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60:53–68

    Article  PubMed  Google Scholar 

  • Paul MJ, Probst CK, Brown LM, de Vries GJ (2018) Dissociation of puberty and adolescent social development in a seasonally breeding species. Curr Biol 28:1116–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payer B, Lee JT, Namekawa SH (2011) X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 130:265–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez JD, Rubinstein ND, Fernandez DE, Santoro SW, Needleman LA, Ho-Shing O, Choi JJ, Zirlinger M, Chen SK, Liu JS (2015) Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. elife 4:e07860

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez JH, Tolla E, Dunn I, Meddle SL, Stevenson TJ (2019) A comparative perspective on extra-retinal photoreception. Trends Endocrinol Metab 30:39–53

    Article  PubMed  CAS  Google Scholar 

  • Petri I, Diedrich V, Wilson D, Fernandez-Calleja J, Herwig A, Steinlechner S, Barrett P (2016) Orchestration of gene expression across the seasons: hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster. Sci Rep 6:29689

    Article  PubMed  PubMed Central  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  CAS  PubMed  Google Scholar 

  • Prendergast BJ (2010) MT1 melatonin receptors mediate somatic, behavioural and reproductive neuroendocrine responses to photoperiod and melatonin in Siberian hamsters (Phodopus sungorus). Endocrinology 151:714–721

    Article  CAS  PubMed  Google Scholar 

  • Prendergast BJ, Kriegsfeld LJ, Nelson RJ (2001) Photoperiodic polyphenisms in rodents: neuroendocrine mechanisms, costs and functions. Q Rev Biol 76:293–325

    Article  CAS  PubMed  Google Scholar 

  • Prendergast BJ, Pyter LM, Kampf-Lassin A, Patel PN, Stevenson TJ (2013) Rapid induction of hypothalamic iodothyronine deiodinase expression by photoperiod and melatonin in juvenile Siberian hamster (Phodopus sungorus). Endocrinology 154:831–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development and cancer. Genes Dev 30:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi A, Kumari Y, Rani S, Kumar V (2013) Neural correlates of migration: activation of hypothalamic clocks in and out of migratory state in the blackheaded bunting (Emberiza melanocephala). PLoS One 8(10):e70065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA (2014) Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update 20:293–307

    Article  CAS  PubMed  Google Scholar 

  • Saenz de Miera C (2018) Maternal photoperiodic programming enlightens the internal regulation of thyroid-hormone deiodinase in tanycytes. J Neuroendocrinol 31:e12679

    Article  CAS  Google Scholar 

  • Saenz de Miera C, Hanon EA, Dardente H, Birnie M, Simonneaux V, Lincoln GA, Hazlerigg DG (2013) Circannual variation in thyroid hormone deiodinase in a short-day breeder. J Neuroendocrinol 25:412–421

    Article  CAS  PubMed  Google Scholar 

  • Saenz de Miera C, Bothorel B, Jaeger C, Simonneaux V, Hazlerigg D (2017) Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland. Proc Natl Acad Sci USA 114:8408–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, Hino T, Suzuki-Migishima R, Kohda T, Ogura A, Ogata T, Yokoyama M, Kaneko-Ishino T, Ishino F (2008) Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 40:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Singh D, Malik S, Gupta NJ, Rani S, Kumar V (2018) Difference in control between spring and autumn migration in birds: insight from seasonal changes in hypothalamic gene expression in captive buntings. Proc Biol Sci 285:1885

    Google Scholar 

  • Stelzer Y, Wu H, Song Y, Shivalila CS, Markoulaki S, Jaenisch R (2016) Parent-of-origin DNA methylation dynamics during mouse development. Cell Rep 16:3167–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetson MH, Elliot JA, Goldman BD (1986) Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters (Phodopus sungorus). Biol Reprod 34:664–669

    Article  CAS  PubMed  Google Scholar 

  • Stevenson TJ (2017a) Environmental and hormonal regulation of neuroendocrine epigenetic enzymes. J Neuroendocrinol 29(1). https://doi.org/10.1111/jne.12471

  • Stevenson TJ (2017b) Circannual and circadian rhythms in hypothalamic DNA methyltransferase and histone deacetylase in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 243:130–137

    Article  CAS  PubMed  Google Scholar 

  • Stevenson TJ (2018) Epigenetic regulation of biological rhythms: an evolutionary ancient molecular timer. Trends Genet 34:90–100

    Article  CAS  PubMed  Google Scholar 

  • Stevenson TJ, Lincoln GA (2017) Epigenetic mechanisms regulating circannual rhythms, Chapter 29. In: Kumar V (ed) Biological timekeeping: clocks, rhythms and behaviour. Springer, India

    Google Scholar 

  • Stevenson TJ, Prendergast BJ (2013) Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Nat Acad Sci USA 110:16651–16656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirland JA, Mohammad YN, Loudon AS (1996) A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductive response to photoperiod change. Proc Royal Society Lond B 263:345–350

    Article  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  CAS  PubMed  Google Scholar 

  • Weaver DR, Reppert SM (1986) Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology 119:2861–2863

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura T, Hirunagi K, Ebihara S, Yoshimura T (2004) Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 145:4264–4267

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T (2013) Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 34:157–166

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181

    Article  CAS  PubMed  Google Scholar 

Recommended Further Reading

  • Stevenson TJ (2017) Circannual and circadian rhythms in hypothalamic DNA methyltransferase and histone deacetylase in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 243:130–137. This paper revealed that the expression levels of several epigenetic enzymes exhibit robust daily rhythms in the hypothalamus.

    Google Scholar 

  • Stevenson TJ, Prendergast BJ (2013) Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci USA 110:16651–16656. This paper provided the first evidence for seasonal rhythms in DNA methylation and DNA methyltransferase enzyme expression.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Stevenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenson, T.J. (2020). Epigenetic Mechanisms in Developmental and Seasonal Programs. In: Ebling, F.J.P., Piggins, H.D. (eds) Neuroendocrine Clocks and Calendars. Masterclass in Neuroendocrinology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-55643-3_4

Download citation

Publish with us

Policies and ethics