Skip to main content

Turbulent Backward-Facing Step Flow: Reliability Assessment of Large-Eddy Simulation Using ILSA

  • Conference paper
  • First Online:
Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications

Abstract

Reliability assessment of large-eddy simulation (LES) of turbulent flows requires consideration of errors due to shortcomings in the modeling of sub-filter scale dynamics and due to discretization of the governing filtered Navier-Stokes equations. The Integral Length-Scale Approximation (ILSA) model is a pioneering sub-filter parameterization that incorporates both these contributions to the total simulation error, and provides user control over the desired accuracy of a simulation. The performance of ILSA, implemented as eddy-viscosity models, for separated turbulent flow over a backward-facing step is investigated here. We show excellent agreement with experimental data and with predictions based on other, well-established sub-filter models. The computational overhead is found to be close to that of a basic Smagorinsky sub-filter model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  2. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  Google Scholar 

  3. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000). ISBN 978-0521598866

    Google Scholar 

  4. Geurts, B.J.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards Inc. (2003). ISBN 978-1930217072

    Google Scholar 

  5. Piomelli, U., Rouhi, A., Geurts, B.J.: A grid-independent length scale for large-eddy simulations. J. Fluid Mech. 766, 499–527 (2015)

    Article  MathSciNet  Google Scholar 

  6. Rouhi, A., Piomelli, U., Geurts, B.J.: Dynamic subfilter-scale stress model for large-eddy simulations. Phys. Rev. Fluids 1(4), 044401 (2016)

    Article  Google Scholar 

  7. Boersma, B.J., Kooper, M.N., Nieuwstadt, T.T.M., Wesseling, P.: Local grid refinement in large-eddy simulation. J. Eng. Math. 32(2–3), 161–175 (1997)

    Article  MathSciNet  Google Scholar 

  8. Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14(6), L41–L44 (2002)

    Article  Google Scholar 

  9. Geurts, B.J., Meyers, J.: Successive inverse polynomial interpolation to optimize Smagorinsky’s model for large-eddy simulation of homogeneous turbulence. Phys. Fluids 18(11), 118102 (2006)

    Article  Google Scholar 

  10. Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. ASME J. Heat Transfer 107(4), 922–929 (1985)

    Google Scholar 

  11. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  12. Geurts, B.J., Holm, D.D.: Regularization modeling for large-eddy simulation. Phys. Fluids 15(1), L13–L16 (2003)

    Article  MathSciNet  Google Scholar 

  13. Bardina, J., Ferziger, J.H., Rogallo, R.S.: Improved subgrid scale models for large-eddy simulation. AIAA Paper 80-1357 (1980)

    Google Scholar 

  14. Geurts, B.J.: Balancing errors in LES, direct and large-eddy. Simulation III, 1–12 (1999)

    Google Scholar 

  15. Nicoud, F., Baggett, J.S., Moin, P., Cabot, W.H.: Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Phys. Fluids 13, 2968–2984 (2001)

    Article  Google Scholar 

  16. Van der Bos, F., Van der Vegt, J.J.W., Geurts, B.J.: A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques. Comput. Methods Appl. Mech. Eng. 196(29–30), 2863–2875 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Geurts, B.J., Van der Bos, F.: Numerically induced high-pass dynamics in large-eddy simulation. Phys. Fluids 17(12), 125103 (2005)

    Article  MathSciNet  Google Scholar 

  18. Meyers, J., Geurts, B.J., Sagaut, P.: A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys. 227(1), 156–173 (2007)

    Article  MathSciNet  Google Scholar 

  19. Meyers, J., Geurts, B.J., Baelmans, M.: Database analysis of errors in large-eddy simulation. Phys. Fluids 15(9), 2740–2755 (2003)

    Article  Google Scholar 

  20. Meyers, J., Meneveau, C., Geurts, B.J.: Error-landscape-based multiobjective calibration of the Smagorinsky eddy-viscosity using high-Reynolds-number decaying turbulence data. Phys. Fluids 22(12), 125106 (2010)

    Article  Google Scholar 

  21. Vreman, B., Geurts, B.J., Kuerten, H.: Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D. Commun. Numer. Methods Eng. 10(10), 785–790 (1994)

    Article  Google Scholar 

  22. Meyers, J., Sagaut, P., Geurts, B.J.: Optimal model parameters for multi-objective large-eddy simulations. Phys. Fluids 18(9), 095103 (2006)

    Article  MathSciNet  Google Scholar 

  23. Geurts, B.J.: Interacting errors in large-eddy simulation: a review of recent developments. J. Turbul. N55 (2006)

    Google Scholar 

  24. Geurts, B.J.: How can we make LES fulfill its promise? In: Advances in LES of Complex Flows, pp. 13–32 (2002)

    Google Scholar 

  25. Geurts, B.J.: Mixing efficiency in turbulent shear layers. J. Turbul. 2(17), 1–23 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Van der Bos, F., Geurts, B.J.: Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence. Comput. Methods Appl. Mech. Eng. 199(13–16), 903–915 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Klein, M., Meyers, J., Geurts, B.J.: Assessment of LES quality measures using the error landscape approach. In: Quality and Reliability of Large-Eddy Simulations, pp. 131–142 (2008)

    Google Scholar 

  28. Piomelli, U., Geurts, B.J.: A grid-independent length scale for large-eddy simulations of wall-bounded flows. In: Leschziner, M.A., Bontoux, P., Geurts, B.J., Launder, B.E., Tropea, C. (eds.) Proceedings of 8th International Symposium Engineering Turbulence Modelling and Measurements—ETMM8, pp. 226–231 (2010)

    Google Scholar 

  29. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  Google Scholar 

  30. Van der Bos, F., Geurts, B.J.: Commutator errors in the filtering approach to large-eddy simulation. Phys. Fluids 17(3), 035108 (2005)

    Google Scholar 

  31. Vanella, M., Piomelli, U., Balaras, E.: Effect of grid discontinuities on large-eddy simulation statistics and flow fields. J. Turbul. 9 (2008)

    Google Scholar 

  32. Van der Bos, F., Geurts, B.J.: Lagrangian dynamics of commutator errors in large-eddy simulation. Phys. Fluids 17(7), 075101 (2005)

    Google Scholar 

  33. Geurts, B.J., Holm, D.D.: Commutator errors in large-eddy simulation. J. Phys. A Math. Gen. 39(9), 2213 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Geurts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geurts, B.J., Rouhi, A., Piomelli, U. (2021). Turbulent Backward-Facing Step Flow: Reliability Assessment of Large-Eddy Simulation Using ILSA. In: Braza, M., Hourigan, K., Triantafyllou, M. (eds) Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-030-55594-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55594-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55593-1

  • Online ISBN: 978-3-030-55594-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics