Skip to main content

Using Multicompartmental Poroelasticity to Explore Brain Biomechanics and Cerebral Diseases

  • Conference paper
  • First Online:
Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 147))

  • 644 Accesses

Abstract

Numerical methods and simulations offer the prospect of improved clinically relevant predictive information, enabling more efficient use of resources for designing treatment protocols, risk assessment and urgently needed management of long term care systems for a wide spectrum of brain disorders. An extended poroelastic model of perfused parenchymal tissue coupled with separate workflows incorporating subject-specific meshes, permeability tensor maps and cerebral blood flow variability is outlined in this work. This consolidated pipeline is also used to provide subject-specific boundary conditions for the regions of the cerebroventricular volume responsible for cerebrospinal fluid (CSF) secretion, in addition to the exit sites which allow for the passage of CSF into the intricate drainage pathways of the brain. Subject-specific datasets used in the modelling of this paper were collected as part of a prospective data collection effort. Two cases were simulated involving one female cognitively healthy control (CHC) subject, and one female subject with mild cognitive impairment (MCI) undergoing a period of high activity. Results showed visibly reduced blood perfusion, clearance of CSF/interstitial fluid (ISF), CSF/ISF accumulation and drainage in the MCI case. Interestingly, peak aqueductal velocity was higher in the MCI case (1.80 cm/s compared to 0.35 cm/s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vardakis, I.C.: Multicompartmental poroelasticity for the integrative modelling of fluid transport in the brain. PhD thesis, Oxford University (2014)

    Google Scholar 

  2. Guo, L., Vardakis, J.C., Lassila, T., Mitolo, M., Ravikumar, N., Chou, D., Lange, M., Foroushani, A.S., Tully, B.J., Taylor, A.Z., Varma, S., Venneri, A., Frangi, A.F., Ventikos, Y.: Subject-specific multiporoelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus 8(1) (2018)

    Google Scholar 

  3. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  4. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  Google Scholar 

  5. Vardakis, J.C., Tully, B.J., Ventikos, Y.: Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: a computational perspective. PLoS ONE 8(12) (2013)

    Google Scholar 

  6. Guo, L, Vardakis, J. C., Chou, D., Ventikos, Y.: A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport. Int. J. Eng. Sci. 147, 103204 (2020)

    Article  MathSciNet  Google Scholar 

  7. Guo, L., Vardakis, J.C., Chou, D., Ventikos, Y.: Development of a three-dimensional multicompartmental poroelastic model for the simulation of cerebrospinal fluid transport. In: Proceedings 12th World Congress on Computational Mechanics, Seoul, Korea (2016)

    Google Scholar 

  8. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer grundlage. F. Duticke, Vienna, Austria (1925)

    MATH  Google Scholar 

  9. Mandel, J.: Consolidation des sols (étude mathématique). Géotechnique 30, 287–289 (1953)

    Article  Google Scholar 

  10. Kivipelto, M., Ngandu, T., Laatikainen, T., Winblad, B., Soininen, H., Tuomilehto, J.: Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 5, 735–741 (2006)

    Article  Google Scholar 

  11. Vardakis, J. C., Guo, L., Peach, T. W., Lassila, T., Mitolo, M., Chou, D., Taylor, Z. A., Varma, S., Venneri, A., Frangi, A. F., Ventikos, Y.: Fluid–structure interaction for highly complex, statistically defined, biological media: Homogenisation and a 3D multi-compartmental poroelastic model for brain biomechanics. J. Fluids. Struct. 91 (2019)

    Google Scholar 

  12. Lassila, T., Di Marco, L.Y., Mitolo, M., Iaia, V., Levedianos, G., Venneri, A., Frangi, A.F.: Screening for cognitive impairment by model assisted cerebral blood flow estimation. IEEE Trans. Biomed. Eng. (2017)

    Google Scholar 

  13. Ursino, M.: Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 275(5 Pt 2), H1733–H1747 (1998)

    Google Scholar 

  14. Mader, G., Olufsen, M., Mahdi, A.: Modeling cerebral blood flow velocity during orthostatic stress. Ann. Biomed. Eng. 43(8), 1748–1758 (2015)

    Article  Google Scholar 

  15. Vardakis, J.C., Chou, D., Tully, B.J., Hung, C.C., Lee, T.H., Tsui, P.H., Ventikos, Y.: Investigating cerebral oedema using poroelasticity. Med. Eng. Phys. 38, 48–57 (2016)

    Article  Google Scholar 

  16. Ramanathan, A., Nelson, A.R., Sagare, A.P., Zlokovic, B.V.: Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front. Aging Neurosci. 7 (2015)

    Google Scholar 

  17. Thomas, T., Miners, S., Love, S.: Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer’s disease and vascular dementia. Brain 138(4), 1059–1069 (2015)

    Article  Google Scholar 

  18. Stone, J., Johnstone, D.M., Mitrofanis, J., O’Rourke, M.: The mechanical cause of age-related dementia (Alzheimer’s disease): the brain is destroyed by the pulse. J. Alzheimer’s Dis. 44(2), 355–373 (2015)

    Article  Google Scholar 

  19. Levy Nogueira, M., Lafitte, O., Steyaert, J.M., Bakardjian, H., Dubois, B., Hampel, H., Schwartz, L.: Mechanical stress related to brain atrophy in Alzheimer’s disease. Alzheimer’s Dement. 12(1), 11–20 (2016)

    Google Scholar 

  20. Stadlbauer, A., Salomonowitz, E., Riet, W., Buchfelder, M., Ganslandt, O.: Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. NeuroImage 51, 42–52 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the European Commission FP7 project VPH-DARE@IT (FP7-ICT-2011-9-601055). We would like to thank our collaborators in the consortium, namely Dr. T. Lassila, Dr. N. Ravikumar, Dr. A. Sarrami-Foroushani, Mr. Milton Hoz de Vila, Prof. Z. A. Taylor and Prof. A. F. Frangi from the University of Leeds for developing the models and workflows to generate subject-specific boundary conditions and extracting permeability tensor maps and meshes of the cerebroventricular system. We would also like to thank Dr. M. Mitolo from Policlinico S. Orsola e Malpighi in Bologna, and Prof. A. Venneri from the University of Sheffield for providing the clinical data allied to the subject-specific applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Ventikos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vardakis, J.C., Guo, L., Chou, D., Ventikos, Y. (2021). Using Multicompartmental Poroelasticity to Explore Brain Biomechanics and Cerebral Diseases. In: Braza, M., Hourigan, K., Triantafyllou, M. (eds) Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-030-55594-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55594-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55593-1

  • Online ISBN: 978-3-030-55594-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics