Skip to main content

Experimental and Numerical Investigation of Steady Fluid Forces in Axial Flow on a Cylinder Confined in a Cylinder Array

  • Conference paper
  • First Online:
Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications

Abstract

The goal of the paper is to investigate experimentally and numerically the Taylor-Lighthill-Païdoussis (TLP) model of fluid forces in axial flow, in the case of a flexible cylinder confined in a cylinder array. This model assumes that the local fluid forces depend only on the local angle, curvature, velocity and acceleration of the structure. The experimental setup consists of a wind tunnel with a test section of length 2m and of width 24cm, surrounding a square array of 3x3 cylinders with pitch-to-diameter ratio 1.33. The Reynolds number is about 100000. The central cylinder can be statically rotated or translated. The steady resultant fluid forces exerted on it are recorded using a 6-axis load cell. Experimental and numerical results are in good agreement. The TLP model performs well at predicting some of the forces measured. However, further investigation on the space distribution of these forces is needed to fully assess the performance of that model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archambeau, F., Méchitoua, N., Sakiz, M.: Code_saturne: a finite volume code for the computation of turbulent incompressible flows. Int. J. Finite Vol. 1 (2004)

    Google Scholar 

  2. Code_Aster. Open source finite element software. http://www.code-aster.org/

  3. de Langre, E., Païdoussis, M.P., Doaré, O., Modarres-Sadeghi, Y.: Flutter of long flexible cylinders in axial flow. J. Fluid Mech. 571, 371–389 (2007)

    Article  MathSciNet  Google Scholar 

  4. Divaret, L., Cadot, O., Moussou, P., Doaré, O.: Normal forces exerted upon a long cylinder oscillating in an axial flow. J. Fluid Mech. 752, 649–669 (2014)

    Article  Google Scholar 

  5. Flamand, J.C., Maguin, J.C., Mattei, A., Rigaudeau, J., Leroux, J.C.: Influence of axial coolant flow on fuel assembly damping for the response to horizontal seismic loads. In: Transactions SMiRT 11, vol. C (1991)

    Google Scholar 

  6. Haaland, S.E.: Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Eng. 105(1), 89–90 (1983)

    Article  Google Scholar 

  7. Lighthill, M.J.: Mathematics and aeronautics. J. R. Aeronaut. Soc. 64, 375–394 (1960)

    Article  MathSciNet  Google Scholar 

  8. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(2), 305–317 (1960)

    Article  MathSciNet  Google Scholar 

  9. Moretti, P.M., Lowery, R.L.: Hydrodynamic inertia coefficients for a tube surrounded by rigid tubes. J. Pressure Vessel Technol. 98(3), 190–193 (1976)

    Article  Google Scholar 

  10. Moussou, P., Guilloux, A., Boccaccio, E., Ricciardi, G.: Fluid damping in fuel assemblies. In: Proceedings ASME-PVP 2017 (2017)

    Google Scholar 

  11. Païdoussis, M.P.: Dynamics of flexible slender cylinders in axial flow. Part 1: theory. J. Fluid Mech. 26(4), 717–736 (1966)

    Google Scholar 

  12. Païdoussis, M.P.: Dynamics of flexible slender cylinders in axial flow. Part 2: experiments. J. Fluid Mech. 26(4), 737–751 (1966)

    Google Scholar 

  13. Païdoussis, M.P.: Dynamics of cylindrical structures subjected to axial flow. J. Sound Vib. 29(3), 365–385 (1973)

    Article  Google Scholar 

  14. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, volu. 2, 2nd edn. Academic Press (2016)

    Google Scholar 

  15. Ricciardi, G., Bellizzi, S., Collard, B., Cochelin, B.: Fluid-structure interaction in a 3-by-3 reduced-scale fuel assembly network. Sci. Technol. Nucl. Install. (2010)

    Google Scholar 

  16. SALOME: Open source pre- and post-processing platform. http://www.salome-platform.org/

  17. Tanaka, H., Takahara, S.: Fluid elastic vibration of tube array in cross flow. J. Sound Vib. 77, 19–37 (1981)

    Article  Google Scholar 

  18. Tanaka, H., Takahara, S., Ohta, K.: Flow-induced vibration of tube arrays with various pitch-to-diameter ratios. J. Pressure Vessel Technol. 104, 168–174 (1982)

    Article  Google Scholar 

  19. Tanaka, H., Tanaka, K., Shimizu, F., Takahara, S.: Fluidelastic analysis of tube bundle vibration in cross-flow. J. Fluids Struct. 16, 93–112 (2002)

    Article  Google Scholar 

  20. Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A 214, 158–183 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Joly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joly, A. et al. (2021). Experimental and Numerical Investigation of Steady Fluid Forces in Axial Flow on a Cylinder Confined in a Cylinder Array. In: Braza, M., Hourigan, K., Triantafyllou, M. (eds) Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-030-55594-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55594-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55593-1

  • Online ISBN: 978-3-030-55594-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics