Abstract
We review what is known about the atomic density close to the nucleus of heavy atoms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
V. Bach, A proof of Scott’s conjecture for ions. Rep. Math. Phys. 28(2), 213–248 (1989)
R.D. Benguria, M. Loss, H. Siedentop, Stability of atoms and molecules in an ultrarelativistic Thomas-Fermi-Weizsäcker model. J. Math. Phys. 49(1), 012302 (2008)
H. Bethe, Quantenmechanik der Ein- und Zwei-Elektronenatome, in Handbuch der Physik, XXIV.1, Buch 2, chap. 3, 2nd edn. ed. by H. Geiger, K. Scheel (Springer, Berlin, 1933), pp. 273–560
G.E. Brown, D.G. Ravenhall, On the interaction of two electrons. Proc. R. Soc. Lond. A. 208, 552–559 (1951)
S. Chandrasekhar, The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931)
H. Chen, On the excess charge problem in relativistic quantum mechanics. PhD thesis, Ludwig-Maximilians-Universität München, July 2019
H. Chen, H. Siedentop, On the excess charge of a relativistic statistical model of molecules with an inhomogeneity correction. arXiv:1912.00205 [math-ph] (2019)
P.A.M. Dirac, A theory of electrons and protons. Proc. R. Soc. Lond. A 126, 360–365 (1930)
E. Engel, R.M. Dreizler, Field-theoretical approach to a relativistic Thomas-Fermi-Dirac-Weizsäcker model. Phys. Rev. A 35, 3607–3618 (1987)
E. Engel, R.M. Dreizler, Solution of the relativistic Thomas-Fermi-Dirac-Weizsäcker model for the case of neutral atoms and positive ions. Phys. Rev. A 38, 3909–3917 (1988)
W.D. Evans, P. Perry, H. Siedentop, The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Commun. Math. Phys. 178(3), 733–746 (1996)
C.L. Fefferman, L.A. Seco, An upper bound for the number of electrons in a large ion. Proc. Natl. Acad. Sci. USA 86, 3464–3465 (1989)
C.L. Fefferman, L.A. Seco, Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)
C. Fefferman, L. Seco, Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2), 145–305 (1992)
C.L. Fefferman, L.A. Seco, Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. Rev. Math. Iberoam. 9(3), 409–551 (1993)
C. Fefferman, L. Seco, The density of a one-dimensional potential. Adv. Math. 107(2), 187–364 (1994)
C. Fefferman, L. Seco, The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2), 263–335 (1994)
C. Fefferman, L. Seco, On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1), 1–188 (1994)
C. Fefferman, L. Seco, The density in a three-dimensional radial potential. Adv. Math. 111(1), 88–161 (1995)
E. Fermi, Un metodo statistico per la determinazione di alcune proprietá dell’atomo. Rend. Accad. Naz. Lincei 6(12), 602–607 (1927)
E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys. 48, 73–79 (1928)
R.L. Frank, H. Siedentop, S. Warzel, The ground state energy of heavy atoms: relativistic lowering of the leading energy correction. Commun. Math. Phys. 278(2), 549–566 (2008)
R.L. Frank, H. Siedentop, S. Warzel, The energy of heavy atoms according to Brown and Ravenhall: the Scott correction. Doc. Math. 14, 463–516 (2009)
R.L. Frank, K. Merz, H. Siedentop, Equivalence of Sobolev norms involving generalized Hardy operators. Int. Math. Res. Notices rnz135 (2019). https://doi.org/10.1093/imrn/rnz135
R.L. Frank, K. Merz, H. Siedentop, B. Simon, Proof of the strong Scott conjecture for Chandrasekhar atoms. Pure Appl. Funct. Anal. Preprint, arXiv:1907.04894 (2019)
W.H. Furry, J.R. Oppenheimer, On the theory of the electron and positive. Phys. Rev. II. Ser. 45, 245–262 (1934)
P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen, 1 edn. (Springer, Wien, 1949)
M. Griesemer, R.T. Lewis, H. Siedentop, A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potential. Doc. Math. 4, 275–283 (1999)
M. Handrek, H. Siedentop, On the maximal excess charge of the Chandrasekhar-Coulomb Hamiltonian in two dimension. Lett. Math. Phys. (2013). https://doi.org/10.1007/s11005-013-0618-5
O.J. Heilmann, E.H. Lieb, The electron density near the nucleus of a large atom. Phys. Rev. A 52(5), 3628–3643 (1995)
I.W. Herbst, Spectral theory of the operator (p 2 + m 2)1∕2 − Ze 2∕r. Commun. Math. Phys. 53, 285–294 (1977)
W. Hughes, An atomic energy lower bound that gives Scott’s correction. PhD thesis, Princeton, Department of Mathematics, 1986
W. Hughes, An atomic lower bound that agrees with Scott’s correction. Adv. Math. 79, 213–270 (1990)
A. Iantchenko, The electron density in intermediate scales. Commun. Math. Phys. 184(2), 367–385 (1997)
A. Iantchenko, H. Siedentop, Asymptotic behavior of the one-particle density matrix of atoms at distances Z −1 from the nucleus. Math. Z. 236(4), 787–796 (2001)
A. Iantchenko, E.H. Lieb, H. Siedentop, Proof of a conjecture about atomic and molecular cores related to Scott’s correction. J. Reine Angew. Math. 472, 177–195 (1996)
V.Ja. Ivrii, I.M. Sigal, Asymptotics of the ground state energies of large Coulomb systems. Ann. Math. 138(2), 243–335 (1993)
H. Jensen, Zur relativistischen Behandlung des Fermiatoms. Z. Phys. 82(11), 794–802 (1933)
T. Kato, Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, 1 edn. (Springer, Berlin, 1966)
D.A. Kirzhnits, Quantum corrections to the Thomas-Fermi equation. Sov. Phys. JETP 5(1), 64–71 (1957)
W. Lenz, Über die Anwendbarkeit der statistischen Methode auf Ionengitter. Z. Phys. 77, 713–721 (1932)
E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)
E.H. Lieb, Analysis of the Thomas-Fermi-von Weizsäcker equation for an infinite atom without electron repulsion. Commun. Math. Phys. 85(1), 15–25 (1982)
E.H. Lieb, D.A. Liberman, Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion. Technical Report LA-9186-MS, Los Alamos National Laboratory, Los Alamos, New Mexico, April 1982
E.H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)
E.H. Lieb, H.-T. Yau, The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)
E.H. Lieb, M. Loss, H. Siedentop, Stability of relativistic matter via Thomas-Fermi theory. Helv. Phys. Acta 69(5/6), 974–984 (1996)
K. Merz, H. Siedentop, Proof of the Strong Scott Conjecture for Heavy Atoms: the Furry Picture. arXiv 2007.03895 (2020)
K. Merz, Über die Grundzustandsdichte relativistischer Coulomb-Systeme. PhD thesis, Ludwig-Maximilians-Universität München, July 2019
K. Merz, H. Siedentop, The atomic density on the Thomas–Fermi length scale for the Chandrasekhar Hamiltonian. Rep. Math. Phys. 83(3), 387–391 (2019)
M.J. Oelker, On domain, self-adjointness, and spectrum of Dirac operators for two interacting particles. PhD thesis, Fakultät für Mathematik, Informatik und Statistik, Ludwig-Maximilians-Universität München, 2019
T. Østergaard Sørensen, The large-Z behavior of pseudorelativistic atoms. J. Math. Phys. 46(5), 052307, 24 (2005)
M. Reiher, A. Wolf, Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science (Wiley-VCH, Weinheim, 2009)
T. Saue, Relativistic Hamiltonians for chemistry: a primer. ChemPhysChem 12(17), 3077–3094 (2011)
J. Schwinger, Thomas-Fermi model: the leading correction. Phys. Rev. A 22(5), 1827–1832 (1980)
J. Schwinger, Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)
J.M.C. Scott, The binding energy of the Thomas-Fermi atom. Philos. Mag. 43, 859–867 (1952)
H. Siedentop, R. Weikard, On some basic properties of density functionals for angular momentum channels. Rep. Math. Phys. 28, 193–218 (1986)
H.K.H. Siedentop, R. Weikard, On the leading energy correction for the statistical model of the atom: non-interacting case. Abh. Braunschweigischen Wiss. Ges. 38, 145–158 (1986)
H. Siedentop, R. Weikard, On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys. 112, 471–490 (1987)
H. Siedentop, R. Weikard, Upper bound on the ground state energy of atoms that proves Scott’s conjecture. Phys. Lett. A 120, 341–342 (1987)
H. Siedentop, R. Weikard, On the leading energy correction of the statistical atom: lower bound. Europhys. Lett. 6, 189–192 (1988)
H. Siedentop, R. Weikard, On the leading correction of the Thomas-Fermi model: lower bound – with an appendix by A. M. K. Müller. Invent. Math. 97, 159–193 (1989)
H. Siedentop, R. Weikard, Proof of Scott’s conjecture, in Symposium “Partial Differential Equations”. Holzhau 1988, ed. by B.-W. Schulze, H. Triebel. Karl-Weierstraß-Institut der Akademie der Wissenschaften der DDR (Leipzig, Teubner, 1989), pp. 295–297
H. Siedentop, R. Weikard, A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators. Ann. Sci. École Norm. Supér. 24(2), 215–225 (1991)
B. Simon, Fifteen problems in mathematical physics, in Perspectives in Mathematics (Birkhäuser, Boston, 1984)
B. Simon, Functional Integration and Quantum Physics (Academic, [Harcourt Brace Jovanovich Publishers], New York, 1979)
M.J. Solomon, Sur la théorie relativiste des atomes à grand nombre d électrons. C. R. Hebd. Séances Acad. Sci. 198, 1023–1025 (1934)
J.P. Solovej, The relativistic Scott correction, in Mathematical and Numerical Aspects of Quantum Chemistry Problems, ed. by M.J. Esteban, C.L. Bris, G. Scuseria. Oberwolfach Report, vol. 47, pp. 52–53. Mathematisches Forschungsinstitut Oberwolfach, European Mathematical Society, Sep 2006
J.P. Solovej, W.L. Spitzer, A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2–3), 383–420 (2003)
J.P. Solovej, T. Østergaard Sørensen, W.L. Spitzer, The relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. 63, 39–118 (2010)
A. Sommerfeld, Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z. Phys. A 78, 283–308 (1932)
J. Sucher, Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A 22(2), 348–362 (1980)
J. Sucher, Foundations of the relativistic theory of many-electron bound states. Int. J. Quantum Chem. 25, 3–21 (1984)
J. Sucher, Relativistic many-electron Hamiltonians. Phys. Scr. 36, 271–281 (1987)
L.H. Thomas, The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927)
C. Tix, Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B 405(3–4), 293–296 (1997)
C. Tix, Self-adjointness and spectral properties of a pseudo-relativistic Hamiltonian due to Brown and Ravenhall. Preprint, mp-arc: 97-441 (1997)
M.S. Vallarta, N. Rosen, The relativistic Thomas-Fermi atom. Phys. Rev. 41, 708–712 (1932)
C.F. von Weizsäcker, Zur Theorie der Kernmassen. Z. Phys. 96, 431–458 (1935)
R.A. Weder, Spectral properties of one-body relativistic spin-zero Hamiltonians. Ann. Inst. H. Poincaré Sect. A (N.S.) 20, 211–220 (1974)
R. Weder, Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20, 319–337 (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Siedentop, H. (2020). The Strong Scott Conjecture: the Density of Heavy Atoms Close to the Nucleus. In: Miranda, P., Popoff, N., Raikov, G. (eds) Spectral Theory and Mathematical Physics. Latin American Mathematics Series(). Springer, Cham. https://doi.org/10.1007/978-3-030-55556-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-55556-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55555-9
Online ISBN: 978-3-030-55556-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)