Skip to main content

The Strong Scott Conjecture: the Density of Heavy Atoms Close to the Nucleus

  • Conference paper
  • First Online:
Spectral Theory and Mathematical Physics

Part of the book series: Latin American Mathematics Series ((LAMSUFSC))

  • 400 Accesses

Abstract

We review what is known about the atomic density close to the nucleus of heavy atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Bach, A proof of Scott’s conjecture for ions. Rep. Math. Phys. 28(2), 213–248 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.D. Benguria, M. Loss, H. Siedentop, Stability of atoms and molecules in an ultrarelativistic Thomas-Fermi-Weizsäcker model. J. Math. Phys. 49(1), 012302 (2008)

    Google Scholar 

  3. H. Bethe, Quantenmechanik der Ein- und Zwei-Elektronenatome, in Handbuch der Physik, XXIV.1, Buch 2, chap. 3, 2nd edn. ed. by H. Geiger, K. Scheel (Springer, Berlin, 1933), pp. 273–560

    Google Scholar 

  4. G.E. Brown, D.G. Ravenhall, On the interaction of two electrons. Proc. R. Soc. Lond. A. 208, 552–559 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Chandrasekhar, The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931)

    Article  MATH  Google Scholar 

  6. H. Chen, On the excess charge problem in relativistic quantum mechanics. PhD thesis, Ludwig-Maximilians-Universität München, July 2019

    Google Scholar 

  7. H. Chen, H. Siedentop, On the excess charge of a relativistic statistical model of molecules with an inhomogeneity correction. arXiv:1912.00205 [math-ph] (2019)

    Google Scholar 

  8. P.A.M. Dirac, A theory of electrons and protons. Proc. R. Soc. Lond. A 126, 360–365 (1930)

    Article  MATH  Google Scholar 

  9. E. Engel, R.M. Dreizler, Field-theoretical approach to a relativistic Thomas-Fermi-Dirac-Weizsäcker model. Phys. Rev. A 35, 3607–3618 (1987)

    Article  Google Scholar 

  10. E. Engel, R.M. Dreizler, Solution of the relativistic Thomas-Fermi-Dirac-Weizsäcker model for the case of neutral atoms and positive ions. Phys. Rev. A 38, 3909–3917 (1988)

    Article  Google Scholar 

  11. W.D. Evans, P. Perry, H. Siedentop, The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Commun. Math. Phys. 178(3), 733–746 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.L. Fefferman, L.A. Seco, An upper bound for the number of electrons in a large ion. Proc. Natl. Acad. Sci. USA 86, 3464–3465 (1989)

    Article  MathSciNet  Google Scholar 

  13. C.L. Fefferman, L.A. Seco, Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Fefferman, L. Seco, Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2), 145–305 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. C.L. Fefferman, L.A. Seco, Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. Rev. Math. Iberoam. 9(3), 409–551 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Fefferman, L. Seco, The density of a one-dimensional potential. Adv. Math. 107(2), 187–364 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Fefferman, L. Seco, The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2), 263–335 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Fefferman, L. Seco, On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1), 1–188 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Fefferman, L. Seco, The density in a three-dimensional radial potential. Adv. Math. 111(1), 88–161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Fermi, Un metodo statistico per la determinazione di alcune proprietá dell’atomo. Rend. Accad. Naz. Lincei 6(12), 602–607 (1927)

    Google Scholar 

  21. E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys. 48, 73–79 (1928)

    Article  MATH  Google Scholar 

  22. R.L. Frank, H. Siedentop, S. Warzel, The ground state energy of heavy atoms: relativistic lowering of the leading energy correction. Commun. Math. Phys. 278(2), 549–566 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.L. Frank, H. Siedentop, S. Warzel, The energy of heavy atoms according to Brown and Ravenhall: the Scott correction. Doc. Math. 14, 463–516 (2009)

    MathSciNet  MATH  Google Scholar 

  24. R.L. Frank, K. Merz, H. Siedentop, Equivalence of Sobolev norms involving generalized Hardy operators. Int. Math. Res. Notices rnz135 (2019). https://doi.org/10.1093/imrn/rnz135

  25. R.L. Frank, K. Merz, H. Siedentop, B. Simon, Proof of the strong Scott conjecture for Chandrasekhar atoms. Pure Appl. Funct. Anal. Preprint, arXiv:1907.04894 (2019)

    Google Scholar 

  26. W.H. Furry, J.R. Oppenheimer, On the theory of the electron and positive. Phys. Rev. II. Ser. 45, 245–262 (1934)

    MATH  Google Scholar 

  27. P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen, 1 edn. (Springer, Wien, 1949)

    Book  MATH  Google Scholar 

  28. M. Griesemer, R.T. Lewis, H. Siedentop, A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potential. Doc. Math. 4, 275–283 (1999)

    MathSciNet  MATH  Google Scholar 

  29. M. Handrek, H. Siedentop, On the maximal excess charge of the Chandrasekhar-Coulomb Hamiltonian in two dimension. Lett. Math. Phys. (2013). https://doi.org/10.1007/s11005-013-0618-5

  30. O.J. Heilmann, E.H. Lieb, The electron density near the nucleus of a large atom. Phys. Rev. A 52(5), 3628–3643 (1995)

    Article  Google Scholar 

  31. I.W. Herbst, Spectral theory of the operator (p 2 + m 2)1∕2 − Ze 2r. Commun. Math. Phys. 53, 285–294 (1977)

    Google Scholar 

  32. W. Hughes, An atomic energy lower bound that gives Scott’s correction. PhD thesis, Princeton, Department of Mathematics, 1986

    Google Scholar 

  33. W. Hughes, An atomic lower bound that agrees with Scott’s correction. Adv. Math. 79, 213–270 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Iantchenko, The electron density in intermediate scales. Commun. Math. Phys. 184(2), 367–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Iantchenko, H. Siedentop, Asymptotic behavior of the one-particle density matrix of atoms at distances Z −1 from the nucleus. Math. Z. 236(4), 787–796 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Iantchenko, E.H. Lieb, H. Siedentop, Proof of a conjecture about atomic and molecular cores related to Scott’s correction. J. Reine Angew. Math. 472, 177–195 (1996)

    MathSciNet  MATH  Google Scholar 

  37. V.Ja. Ivrii, I.M. Sigal, Asymptotics of the ground state energies of large Coulomb systems. Ann. Math. 138(2), 243–335 (1993)

    Google Scholar 

  38. H. Jensen, Zur relativistischen Behandlung des Fermiatoms. Z. Phys. 82(11), 794–802 (1933)

    Article  MATH  Google Scholar 

  39. T. Kato, Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, 1 edn. (Springer, Berlin, 1966)

    Google Scholar 

  40. D.A. Kirzhnits, Quantum corrections to the Thomas-Fermi equation. Sov. Phys. JETP 5(1), 64–71 (1957)

    MathSciNet  MATH  Google Scholar 

  41. W. Lenz, Über die Anwendbarkeit der statistischen Methode auf Ionengitter. Z. Phys. 77, 713–721 (1932)

    Article  MATH  Google Scholar 

  42. E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. E.H. Lieb, Analysis of the Thomas-Fermi-von Weizsäcker equation for an infinite atom without electron repulsion. Commun. Math. Phys. 85(1), 15–25 (1982)

    Article  MATH  Google Scholar 

  44. E.H. Lieb, D.A. Liberman, Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion. Technical Report LA-9186-MS, Los Alamos National Laboratory, Los Alamos, New Mexico, April 1982

    Google Scholar 

  45. E.H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  46. E.H. Lieb, H.-T. Yau, The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. E.H. Lieb, M. Loss, H. Siedentop, Stability of relativistic matter via Thomas-Fermi theory. Helv. Phys. Acta 69(5/6), 974–984 (1996)

    MathSciNet  MATH  Google Scholar 

  48. K. Merz, H. Siedentop, Proof of the Strong Scott Conjecture for Heavy Atoms: the Furry Picture. arXiv 2007.03895 (2020)

    Google Scholar 

  49. K. Merz, Über die Grundzustandsdichte relativistischer Coulomb-Systeme. PhD thesis, Ludwig-Maximilians-Universität München, July 2019

    Google Scholar 

  50. K. Merz, H. Siedentop, The atomic density on the Thomas–Fermi length scale for the Chandrasekhar Hamiltonian. Rep. Math. Phys. 83(3), 387–391 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. M.J. Oelker, On domain, self-adjointness, and spectrum of Dirac operators for two interacting particles. PhD thesis, Fakultät für Mathematik, Informatik und Statistik, Ludwig-Maximilians-Universität München, 2019

    Google Scholar 

  52. T. Østergaard Sørensen, The large-Z behavior of pseudorelativistic atoms. J. Math. Phys. 46(5), 052307, 24 (2005)

    Google Scholar 

  53. M. Reiher, A. Wolf, Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  54. T. Saue, Relativistic Hamiltonians for chemistry: a primer. ChemPhysChem 12(17), 3077–3094 (2011)

    Article  Google Scholar 

  55. J. Schwinger, Thomas-Fermi model: the leading correction. Phys. Rev. A 22(5), 1827–1832 (1980)

    Article  MathSciNet  Google Scholar 

  56. J. Schwinger, Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)

    Article  MathSciNet  Google Scholar 

  57. J.M.C. Scott, The binding energy of the Thomas-Fermi atom. Philos. Mag. 43, 859–867 (1952)

    Article  Google Scholar 

  58. H. Siedentop, R. Weikard, On some basic properties of density functionals for angular momentum channels. Rep. Math. Phys. 28, 193–218 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  59. H.K.H. Siedentop, R. Weikard, On the leading energy correction for the statistical model of the atom: non-interacting case. Abh. Braunschweigischen Wiss. Ges. 38, 145–158 (1986)

    MATH  Google Scholar 

  60. H. Siedentop, R. Weikard, On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys. 112, 471–490 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Siedentop, R. Weikard, Upper bound on the ground state energy of atoms that proves Scott’s conjecture. Phys. Lett. A 120, 341–342 (1987)

    Article  MathSciNet  Google Scholar 

  62. H. Siedentop, R. Weikard, On the leading energy correction of the statistical atom: lower bound. Europhys. Lett. 6, 189–192 (1988)

    Article  MATH  Google Scholar 

  63. H. Siedentop, R. Weikard, On the leading correction of the Thomas-Fermi model: lower bound – with an appendix by A. M. K. Müller. Invent. Math. 97, 159–193 (1989)

    Article  MATH  Google Scholar 

  64. H. Siedentop, R. Weikard, Proof of Scott’s conjecture, in Symposium “Partial Differential Equations”. Holzhau 1988, ed. by B.-W. Schulze, H. Triebel. Karl-Weierstraß-Institut der Akademie der Wissenschaften der DDR (Leipzig, Teubner, 1989), pp. 295–297

    Google Scholar 

  65. H. Siedentop, R. Weikard, A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators. Ann. Sci. École Norm. Supér. 24(2), 215–225 (1991)

    Article  MATH  Google Scholar 

  66. B. Simon, Fifteen problems in mathematical physics, in Perspectives in Mathematics (Birkhäuser, Boston, 1984)

    MATH  Google Scholar 

  67. B. Simon, Functional Integration and Quantum Physics (Academic, [Harcourt Brace Jovanovich Publishers], New York, 1979)

    Google Scholar 

  68. M.J. Solomon, Sur la théorie relativiste des atomes à grand nombre d électrons. C. R. Hebd. Séances Acad. Sci. 198, 1023–1025 (1934)

    MATH  Google Scholar 

  69. J.P. Solovej, The relativistic Scott correction, in Mathematical and Numerical Aspects of Quantum Chemistry Problems, ed. by M.J. Esteban, C.L. Bris, G. Scuseria. Oberwolfach Report, vol. 47, pp. 52–53. Mathematisches Forschungsinstitut Oberwolfach, European Mathematical Society, Sep 2006

    Google Scholar 

  70. J.P. Solovej, W.L. Spitzer, A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2–3), 383–420 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  71. J.P. Solovej, T. Østergaard Sørensen, W.L. Spitzer, The relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. 63, 39–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Sommerfeld, Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z. Phys. A 78, 283–308 (1932)

    Article  MATH  Google Scholar 

  73. J. Sucher, Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A 22(2), 348–362 (1980)

    Article  MathSciNet  Google Scholar 

  74. J. Sucher, Foundations of the relativistic theory of many-electron bound states. Int. J. Quantum Chem. 25, 3–21 (1984)

    Article  Google Scholar 

  75. J. Sucher, Relativistic many-electron Hamiltonians. Phys. Scr. 36, 271–281 (1987)

    Article  Google Scholar 

  76. L.H. Thomas, The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927)

    Article  MATH  Google Scholar 

  77. C. Tix, Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B 405(3–4), 293–296 (1997)

    Article  MathSciNet  Google Scholar 

  78. C. Tix, Self-adjointness and spectral properties of a pseudo-relativistic Hamiltonian due to Brown and Ravenhall. Preprint, mp-arc: 97-441 (1997)

    Google Scholar 

  79. M.S. Vallarta, N. Rosen, The relativistic Thomas-Fermi atom. Phys. Rev. 41, 708–712 (1932)

    Article  MATH  Google Scholar 

  80. C.F. von Weizsäcker, Zur Theorie der Kernmassen. Z. Phys. 96, 431–458 (1935)

    Google Scholar 

  81. R.A. Weder, Spectral properties of one-body relativistic spin-zero Hamiltonians. Ann. Inst. H. Poincaré Sect. A (N.S.) 20, 211–220 (1974)

    Google Scholar 

  82. R. Weder, Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20, 319–337 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Siedentop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siedentop, H. (2020). The Strong Scott Conjecture: the Density of Heavy Atoms Close to the Nucleus. In: Miranda, P., Popoff, N., Raikov, G. (eds) Spectral Theory and Mathematical Physics. Latin American Mathematics Series(). Springer, Cham. https://doi.org/10.1007/978-3-030-55556-6_14

Download citation

Publish with us

Policies and ethics