Skip to main content

Quantised Calculus for Perturbed Massive Dirac Operator on Noncommutative Euclidean Space

  • Conference paper
  • First Online:
Spectral Theory and Mathematical Physics

Part of the book series: Latin American Mathematics Series ((LAMSUFSC))

  • 352 Accesses

Abstract

In this paper we study quantised calculus for the massive unperturbed Dirac operator \({\mathcal D}_{m}\), m > 0, as well as perturbed Dirac operator \({\mathcal D}_{m}+V\), on the noncommutative Euclidean space . We prove a necessary and sufficient condition for the quantised derivative \(i[\operatorname {sgn}({\mathcal D}_m+V), 1\otimes x]\) to belong to the weak Schatten ideal \({\mathcal L}_{d,\infty }\). This extends and generalises earlier results for Dirac operator on the classical Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Birman, M. Solomyak, Estimates on singular values of integral operators. Russ. Math. Surv. 32(1), 15–89 (1977)

    Article  Google Scholar 

  2. M. Birman, L. Koplienko, M. Solomyak, Estimates of the spectrum of a difference of fractional powers of selfadjoint operators. Izv. Vysš. Učebn. Zaved. Matematika 3(154), 3–10 (1975)

    MathSciNet  MATH  Google Scholar 

  3. O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1, 2nd edn. Texts and Monographs in Physics (Springer, New York, 1987). C - and W -algebras, symmetry groups, decomposition of states

    Google Scholar 

  4. A. Connes, Noncommutative differential geometry. Inst. Hautes Etudes Sci. Publ. Math. 62, 257–360 (1985)

    Article  MathSciNet  Google Scholar 

  5. A. Connes, Noncommutative Geometry (Academic, San Diego, 1994)

    MATH  Google Scholar 

  6. A. Connes, D. Sullivan, N. Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes. Topology 33(4), 663–681 (1994)

    Article  MathSciNet  Google Scholar 

  7. A. Connes, F. Sukochev, D. Zanin, Trace theorem for quasi-Fuchsian groups. (Russian) Mat. Sb. 208(10), 59–90 (2017). Translation in Sb. Math. 208(10), 1473–1502 (2017)

    Google Scholar 

  8. A. Connes, E. McDonald, F. Sukochev, D. Zanin, Conformal trace theorem for Julia sets of quadratic polynomials. Ergodic Theory Dynam. Syst. 39, 2481–2506 (2019)

    Article  MathSciNet  Google Scholar 

  9. M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. (2) 106(1), 93–100 (1977)

    Google Scholar 

  10. V. Gayral, J. Gracia-Bondía, B. Iochum, T. Schücker, J. Várilly, Moyal planes are spectral triples. Commun. Math. Phys. 246(3), 569–623 (2004)

    Article  MathSciNet  Google Scholar 

  11. F. Gesztesy, Y. Latushkin, K.-A. Makarov, F. Sukochev, Y. Tomilov, The index formula and the spectral shift function for relatively trace class perturbations. Adv. Math. 227(1), 319–420 (2011)

    Article  MathSciNet  Google Scholar 

  12. A.M. González-Pérez, M. Junge, J. Parcet, Singular integral in quantum Euclidean spaces (2017). arXiv:1705.01081

    Google Scholar 

  13. S. Janson, T.H. Wolff, Schatten classes and commutators of singular integral operators. Ark. Mat. 20(2), 301–310 (1982)

    Article  MathSciNet  Google Scholar 

  14. G. Levitina, F. Sukochev, D. Zanin, Sign of a perturbed massive Dirac operator and associated Fredholm module. J. Geom. Phys. 136, 244–267 (2019)

    Article  MathSciNet  Google Scholar 

  15. G. Levitina, F. Sukochev, D. Zanin, Cwikel estimates revisited. Proc. Lond. Math. Soc. (3) 120, 265–304 (2020)

    Google Scholar 

  16. S. Lord, F. Sukochev, D. Zanin, Singular Traces, vol. 46. De Gruyter Studies in Mathematics (De Gruyter, Berlin, 2013). Theory and applications

    Google Scholar 

  17. S. Lord, E. McDonald, F. Sukochev, D. Zanin, Quantum differentiability of essentially bounded functions on Euclidean space. J. Funct. Anal. 273(7), 2353–2387 (2017)

    Article  MathSciNet  Google Scholar 

  18. E. McDonald, F. Sukochev, X. Xiong, Quantum differentiability on quantum tori. Commun. Math. Phys. 371, 1231–1260 (2019)

    Article  MathSciNet  Google Scholar 

  19. E. McDonald, F. Sukochev, X. Xiong, Quantum differentiability of noncommutative Euclidean space. Comm. Math. Phys. 379(2), 491–542 (2020)

    Article  MathSciNet  Google Scholar 

  20. V. Peller, Hankel Operators and Their Applications. Springer Monographs in Mathematics (Springer, New York, 2003)

    Google Scholar 

  21. M. Rieffel, Deformation quantization for actions of R d. Mem. Am. Math. Soc. 106(506), x+93 (1993)

    Google Scholar 

  22. R. Rochberg, S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators. J. Funct. Anal. 86(2), 237–306 (1989)

    Article  MathSciNet  Google Scholar 

  23. B. Simon, Trace Ideals and Their Applications, 2nd edn., vol. 120. Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2005)

    Google Scholar 

  24. J. Weidmann, Linear Operators in Hilbert Spaces, vol. 68. Graduate Texts in Mathematics (Springer, New York, 1980). Translated from the German by Joseph Szücs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Levitina .

Editor information

Editors and Affiliations

Appendix: Auxiliary Computation

Appendix: Auxiliary Computation

Lemma A.1

Let e ij be the N(d) × N(d)-matrix units and m > 0. For any i, j = 1, …N, we have

$$\displaystyle \begin{aligned}\Re\Big( \int_0^\infty ({\mathcal D}_m+i\lambda)^{-1} (e_{ij}\otimes 1)({\mathcal D}_m+i\lambda)^{-1}d\lambda \Big)=(m^2-\Delta_\theta)^{-1/2} \Psi_{ij},\end{aligned}$$

where Ψ ij is a bounded operator on .

Proof

Since \({\mathcal D}_m^2+\lambda ^2=-1\otimes (\lambda ^2+m^2-\Delta _\theta )\), it follows that \({\mathcal D}_m^2+\lambda ^2\) commutes with e ij ⊗ 1. Therefore, we can write

$$\displaystyle \begin{aligned} \Re&\big(({\mathcal D}_m+i\lambda)^{-1} (e_{ij}\otimes 1)({\mathcal D}_m+i\lambda)^{-1}\big) \\&=\frac{1}{2}\Big(\frac{{\mathcal D}_m}{\lambda^2+{\mathcal D}_m^2}-i\frac{\lambda}{\lambda^2+{\mathcal D}_m^2}\Big)(e_{ij}\otimes 1)\Big(\frac{{\mathcal D}_m}{\lambda^2+{\mathcal D}_m^2}-i\frac{\lambda}{\lambda^2+{\mathcal D}_m^2}\Big)+ \\&\qquad +\frac{1}{2}\Big(\frac{{\mathcal D}_m}{\lambda^2+{\mathcal D}_m^2}+i\frac{\lambda}{\lambda^2+{\mathcal D}_m^2}\Big)(e_{ij}\otimes 1)\Big(\frac{{\mathcal D}_m}{\lambda^2+{\mathcal D}_m^2}+i\frac{\lambda}{\lambda^2+{\mathcal D}_m^2}\Big) \\&=\frac{{\mathcal D}_m(e_{ij}\otimes 1){\mathcal D}_m-\lambda^2}{(\lambda^2+{\mathcal D}_m^2)^2}. \end{aligned} $$

Therefore, we can compute

$$\displaystyle \begin{aligned} \int_0^\infty&\Re\big(({\mathcal D}_m+i\lambda)^{-1} (e_{ij}\otimes 1)({\mathcal D}_m+i\lambda)^{-1}\big)d\lambda \\&=-{\mathcal D}_m(e_{ij}\otimes 1) {\mathcal D}_m \int_0^\infty\frac{d\lambda}{(\lambda^2+m^2-\Delta_\theta)^{2}}-\int_0^\infty\frac{\lambda^2d\lambda}{(\lambda^2+m^2-\Delta_\theta)^{2}} \\&=-\frac{\pi}{4}{\mathcal D}_m(e_{ij}\otimes 1) {\mathcal D}_m (m^2-\Delta_\theta)^{-3/2}-\frac{\pi}{4}(m^2-\Delta_\theta)^{-1/2}\\ &=-\frac{\pi}4(m^2-\Delta_\theta)^{-1/2}\cdot \Big(\frac{{\mathcal D}_m}{(m^2-\Delta_\theta)^{1/2}}(e_{ij}\otimes 1) \frac{{\mathcal D}_m}{(m^2-\Delta_\theta)^{1/2}}+1\Big). \end{aligned} $$

Since \({\mathcal D}_m(m^2-\Delta _\theta )^{-1/2}\) is bounded, it follows that

$$\displaystyle \begin{aligned}\Psi_{ij}:=-\frac\pi4\Big(\frac{{\mathcal D}_m}{(m^2-\Delta_\theta)^{1/2}}(e_{ij}\otimes 1) \frac{{\mathcal D}_m}{(m^2-\Delta_\theta)^{1/2}}+1\Big),\end{aligned}$$

is bounded operator, as required. □

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levitina, G., Sukochev, F. (2020). Quantised Calculus for Perturbed Massive Dirac Operator on Noncommutative Euclidean Space. In: Miranda, P., Popoff, N., Raikov, G. (eds) Spectral Theory and Mathematical Physics. Latin American Mathematics Series(). Springer, Cham. https://doi.org/10.1007/978-3-030-55556-6_10

Download citation

Publish with us

Policies and ethics