Adame MF, Santini NS, Tovilla C, Vázquez-Lule A, Castro L, Guevara M (2015) Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12:3805–3818
CrossRef
Google Scholar
BSN [Badan Standardisasi Nasional] (2011) Pengukuran dan penghitungan cadangan karbon-Pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest carbon accounting). Indonesia
Google Scholar
Basuki I (2017) Carbon stocks and emission factors of tropical peat swamp forests in respond to land cover changes in West Kalimantan, Indonesia. Dissertation. Oregon State University, Corvallis, Oregon, USA
Google Scholar
Bhomia RK, van Lent J, Grandez-Rios JM, Hergoualc’h K, Honorio Coronado EN, Murdiyarso D (2019) Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Maranon river basin of the Peruvian Amazon. Mitig Adapt Strateg Glob Change 24(4):645–668
Google Scholar
Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11
CrossRef
Google Scholar
Chao KJ, Phillips OL, Baker TR (2008) Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Can J For Res 38:795–805
CrossRef
Google Scholar
Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol Manage 13:671–684
CrossRef
Google Scholar
Corley RHV, Gray BS, Kee NS (1971) Productivity of the oil palm (Elaeis guineensis Jacq.) in Malaysia. Exp Agric 7:129–136
CrossRef
Google Scholar
Davies SJ, Ashton PS (1999) Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo. Am J Bot 86:1786–1795
CAS
CrossRef
Google Scholar
Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quatern Sci Rev 30(7–8):999–1010. https://doi.org/10.1016/j.quascirev.2011.01.018
CrossRef
Google Scholar
Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297
CAS
CrossRef
Google Scholar
Draper FC, Roucoux KH, Lawson IT, Mitchard ET, Coronado ENH, Outi L, Montenegro LT, Sandoval EV, Baker TR (2014) The distribution and amount of carbon in the largest peat land complex in Amazonia. Environ Res Lett 9:124017
CrossRef
Google Scholar
EU (2019) Commision Delegated Act No 2055. Supplementing Directive (EU) 2018/2001 as regards the determination of high indirect land-use change- risk feedstock for which a significant expansion of the production area into land with high carbon stock is observed and the certification of low indirect land use change risk biofuels, bioliquids and biomass fuels
Google Scholar
Farmer J, Matthews R, Smith P, Langan C, Hergoualc’h K, Verchot L, Smith JU (2014) Comparison of methods for quantifying soil carbon in tropical peats. Geoderma 214:177–183
CrossRef
Google Scholar
Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change 46:115–158
CAS
CrossRef
Google Scholar
Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittman F, Householder E, Herold N, Murdiyarso D (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Change Biol 23:3581–3599
CrossRef
Google Scholar
Henson IE (2003) The Malaysian national average oil palm: concept and evaluation. Oil Palm Bull 46:15–27
Google Scholar
Hergoualc’h K, Carmenta R, Atmadja S, Martius C, Murdiyarso D, Purnomo H (2016) Managing peatlands in Indonesia: challenges and opportunities for local and global communities. CIFOR Infobrief no. 205
Google Scholar
Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892–1907
Google Scholar
Hughes RF, Kauffman JB, Jaramillo VJ (2000) Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecol Appl 10:515–527
CrossRef
Google Scholar
Istomo (2002) Phosporus and calcium contents in the soil and biomass of peat swamp forest (A Case study at the concession area of PT. Diamond Raya Timber, Bagan Siapi-api, Riau Province). Dissertation. Bogor Agricultural University, Bogor, Indonesia.
Google Scholar
Istomo C, Wibisono ITC (2009) Plant diversity and biomass content in relation to wise use of tropical peatland. In: Proceedings of the Bogor symposium and workshop on tropical Peatland management, Indonesia, 14–15 July
Google Scholar
Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158
CAS
CrossRef
Google Scholar
Jourdan C, Rey H (1997) Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 190:235–246
CAS
CrossRef
Google Scholar
Kauffman JB, Heider C, Cole TG, Dwire KA, Donato D (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31:343–352
CrossRef
Google Scholar
Kauffman JB, Donato D (2012) Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper. Center for International Forestry Research (CIFOR), Bogor, Indonesia
Google Scholar
Kauffman JB, Arifanti VB, Basuki I, Kurnianto S, Novita N, Murdiyarso M, Donato D, Warren MW (2016) Protocols for the measurement, monitoring, and reporting of structure, biomass and carbon stocks in tropical peat swamp forest. Working Paper. Center for International Forestry Research (CIFOR), Bogor, Indonesia
Google Scholar
Kauffman JB, Trejo HH, Garcia MDCJ, Heider C, Contreras WM (2016) Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecol Manage 24:203–216
CAS
CrossRef
Google Scholar
Khasanah NM, van Noordwijk M, Ningsih H (2015) Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environ Sci 1:1119964
CrossRef
Google Scholar
Kho LK, Jepsen MR (2015) Carbon stock of oil palm plantations and tropical forests in Malaysia: a review. Singap J Trop Geogr 36:249–266
CrossRef
Google Scholar
Krisnawati H, Adinugroho WC, Imanuddin R, Hutabarat S (2014) Estimation of forest biomass for quantifying CO2 emissions in Central Kalimantan: a comprehensive approach in determining forest carbon emission factors. Research and development center for conservation and rehabilitation. Forestry Research and Development Agency, Bogor, Indonesia
Google Scholar
Krisnawati HWC, Adinugroho R, Imanuddin (2012) The dynamic of aboveground carbon stock in peat swamp forest. Proceedings of international symposium on wild-fire and carbon management in peat forest in Indonesia, 13–14 Sept. Bogor, Indonesia
Google Scholar
Langner A, Siegert F (2009) Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob Change Biol 15:48–62
CrossRef
Google Scholar
Manuri SC, Brack NP, Nugroho K, Hergoualc’h N, Novita H, Dotzauer L, Verchot C, Agung S, Putra E, Widyasari (2014) Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecol Manag 334:241–253
Google Scholar
Miettinen J, Shi C, Liew SC (2015) Land cover distribution in the peatldns of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob Ecol Conserv 6:67:68
Google Scholar
Ministry of Environment and Forestry (2015) Tanjung Puting national park. https://tanjungputing.dephut.go.id/index.php/tentang-kawasan/letak-dan-luas. Retrieved 6 Jan 2015
Murdiyarso D, Donato D, Kauffman JB, Kurnianto S, Stidham M, Kanninen M (2009) Carbon storage in mangrove and peatland ecosystems: a preliminary account from plots in Indonesia. Working Paper 48. Center for International Forestry Research (CIFOR), Bogor, Indonesia
Google Scholar
Málaga N, Hergoualc’h K, Kapp G, Martius C (2020) Variation in vegetation and ecosystem carbon stock due to the conversion of disturbed forest to oil palm plantation in Peruvian Amazonia. Ecosystems 1–19
Google Scholar
Ng SK, Thamboo S, de Souza P (1968) Nutrient contents of oil palms in Malaysia. II. Nutrients in vegetative tissues. Malaysia Agric J 46:332–391
CAS
Google Scholar
Novita N (2010) Above ground biomass of logged-over forests in Merang, South Sumatra. Thesis. Graduate School. Bogor Agricultural University. Bogor, Indonesia
Google Scholar
Noway Government (2019) News: https://www.norway.no/en/indonesia/norway-indonesia/news-events/news2/indonesia-reports-reduced-deforestation-triggering-first-carbon-payment-from-norway/
Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818
CrossRef
Google Scholar
Persch S, Hergoualc’h K, Hölscher D, Verchot L (In prep) Large above- and below-ground biomass carbon losses from a tropical peat swamp forest transition into an oil palm plantation: a case study in Sumatra, Indonesia
Google Scholar
Page SE, Rieley JO, Wüst R (2006) Lowland tropical peatlands of Southeast Asia. Peatlands: evolution and records of environmental and climate changes. Elsevier
Google Scholar
Posa MRC, Wijedasa LS, Corlett RT (2011) Biodiversity and conservation of tropical peat swamp forests. Bioscience 61:49–57
CrossRef
Google Scholar
Saharjo BH (2007) Shifting cultivation in peatlands. Mitig Adapt Strat Glob Change 12:135–146
CrossRef
Google Scholar
Sheehan PJ (1984) Effects on community and ecosystem structure and dynamics. Effects of pollutants at the ecosystem level. Wiley
Google Scholar
Simbolon H (2015) Above ground biomass changes in the peat swamp forests of Central Kalimantan https://www.forestday.org/fileadmin/tropical-workshop/Plenary-3/17A_SimbolonH_Above%20ground%20biomass.pdf. Accessed 13 July 2015
Syahrinudin (2005) The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. Dissertation. University of Goettingen, Germany
Google Scholar
Warren MW, Kauffman JB, Murdiyarso M, Anshari G, Hergoualc’h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485
CAS
CrossRef
Google Scholar
Warren M, Hergoualc’h K, Kauffman B, Murdiyarso D, Kolka R (2017) An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manage 12:12
Google Scholar
Weiss D, Shotyk W, Rieley J, Page S, Gloor M, Reese S, Martinez-Cortizas A (2002) The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim Cosmochim Acta 66:2307–2323
CAS
CrossRef
Google Scholar
Wösten JHM, Van Den Berg J, Van Eijk P, Gevers GJM, Giesen WBJT, Hooijer A, Idris A, Leenman PH, Rais DS, Siderius C, Silvius MJ (2006) Interrelationships between hydrology and ecology in fire degraded tropical peat swamp forests. Water Resour Develop 22:157–174
CrossRef
Google Scholar
Yu Z, Beilman DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. EOS 92: 97-108.
Google Scholar