Skip to main content

Milk and Other Glycosidases

  • Chapter
  • First Online:
Agents of Change

Abstract

Milk contains various glycosidases catalyzing the hydrolysis of glycosidic bonds in sugars. They contribute to the lysosomal catabolism of sugars and glycoconjugates and are further expected to play key roles in the digestion of oligosaccharides in the gut of neonates. Glycosidases in milk can be of bovine origin, i.e., from epithelial cells, blood or immune cells, or of microbiological origin. Some glycosidases are associated with mammary inflammation, particularly β-glucuronidase and NAGase, which are released into the milk from lysosomes of damaged epithelial cells or secreted from neutrophils during phagocytosis or cell lysis. Overall, the importance of glycosidases on cleavage of valuable milk oligosaccharides is still not fully elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldredge DL, Geronimo MR, Hua S, Nwosu CC, Lebrilla CB, Barile D (2013) Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology 23(6):664–676

    Google Scholar 

  • Alipour MJ, Jalanka J, Pessa-Morikawa T, Kokkonen T, Satokari R, Hynonen U, Iivanainen A, Niku M (2018) The composition of the perinatal intestinal microbiota in cattle. Sci Rep 8(1):10437

    Google Scholar 

  • Andrews AT, Anderson M, Goodenough PW (1987) A study of the heat stabilities of a number of indigenous milk enzymes. J Dairy Res 54:237–246

    Google Scholar 

  • Ansari SA, Satar R (2012) Recombinant β-galactosidases – past, present and future: a mini review. J Mol Catal B Enzym 81:1–6

    Google Scholar 

  • Auldist MJ, Hubble IB (1998) Effects of mastitis on raw milk and dairy products. Aust J Dairy Technol 53:28–36

    Google Scholar 

  • Boehm G, Stahl B (2007) Oligosaccharides from Milk. J Nutr 137:847–849

    Article  Google Scholar 

  • Burvenich C, Guidry AJ, Pape MJ (1995) Natural defence mechanisms of the lactating and dry mammary gland. In: Proceedings of the Third IDF International Mastitis Seminar, pp 3–13

    Google Scholar 

  • Cao X, Yang M, Yang N, Liang X, Tao D, Liu B, Wu J, Yue X (2019) Characterization and comparison of whey N-glycoproteomes from human and bovine colostrum and mature milk. Food Chem 276:266–273

    Google Scholar 

  • Chagunda MG, Larsen T, Bjerring M, Ingvartsen KL (2006) L-lactate dehydrogenase and N-acetyl-beta-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J Dairy Res 73(4):431–440

    Google Scholar 

  • Chan LE, Beverly RL, Dallas DC (2019) The enzymology of human milk. In: Dairy enzymology. Springer, Berlin

    Google Scholar 

  • Contesini FJ, de Alencar FJ, Kawaguti HY, de Barros Fernandes PC, de Oliveira CP, da Graca Nascimento M, Sato HH (2013) Potential applications of carbohydrases immobilization in the food industry. Int J Mol Sci 14(1):1335–1369

    Google Scholar 

  • Coppa GV, Pierani P, Zampini L, Carloni I, Carlucci A, Gabrielli O (1999) Oligosaccharides in human milk during different phases of lactation. Acta Paediatr 430:89–94

    Article  Google Scholar 

  • De Noni I (2006) Study on the variability of fucosidase activity in bovine milk by means of HPLC. Int Dairy J 16(1):9–17

    Google Scholar 

  • Dekker P, Koenders D, Bruins M (2019) Lactose-free dairy products: market developments, production, nutrition and health benefits. Nutrients 11(3):551

    Google Scholar 

  • Djabri B, Bareille N, Beaudeau F, Seegers H (2002) Quarter milk somatic cell count in infected dairy cows: a meta-analysis. Vet Res 33(4):335–357

    Google Scholar 

  • Fox PF, Kelly AL (2006) Indigenous enzymes in milk: overview and historical aspects—part 2. Int Dairy J 16(6):517–532

    Google Scholar 

  • Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S (2000) Human milk oligosaccharides are minimally digested in vitro. J Nutr 130:3014–3020

    Article  CAS  Google Scholar 

  • Griffiths MW (1986) Use of milk enzymes as indices of heat treatment. J Food Prot 49:696–705

    Article  CAS  Google Scholar 

  • Hovinen M, Simojoki H, Poso R, Suolaniemi J, Kalmus P, Suojala L, Pyorala S (2016) N-acetyl beta-D-glucosaminidase activity in cow milk as an indicator of mastitis. J Dairy Res 83(2):219–227

    Google Scholar 

  • Huang J, Kailemia MJ, Goonatilleke E, Parker EA, Hong Q, Sabia R, Smilowitz JT, German JB, Lebrilla CB (2017) Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM). Anal Bioanal Chem 409(2):589–606

    Google Scholar 

  • Hurley WL (1987) Assays and activities of glycosidic enzymes in bovine peripheral blood leucocytes. Vet Immunol Immunopathol 16:85–93

    Article  CAS  Google Scholar 

  • Jansson T, Clausen MR, Sundekilde UK, Eggers N, Nyegaard S, Larsen LB, Ray C, Sundgren A, Andersen HJ, Bertram HC (2014) Lactose-hydrolyzed milk is more prone to chemical changes during storage than conventional ultra-high-temperature (UHT) milk. J Agric Food Chem 62(31):7886–7896

    Google Scholar 

  • Jensen S, Jansson T, Eggers N, Clausen MR, Larsen LB, Jensen HB, Ray C, Sundgren A, Andersen HJ, Bertram HC (2015) Storage-induced changes in the sensory characteristics and volatiles of conventional and lactose-hydrolyzed UHT processed milk. Eur Food Res Technol 240(6):1247–1257

    Google Scholar 

  • Józwik A, Bagnicka E, Slivá-Józwik A, Strzalkowska N, Sloniewski K, Krzyzewski J, Kolataj A (2004) Activity of selected glycosidases of whole milk in cows as related to feeding season. Anim Sci Paper Rep 22:673–677

    Google Scholar 

  • Józwik A, Strzalkowska N, Lipinska P, Markiewicz-Kęszycka M, Łysek-Gładysińska M, Wróblewska B, Stanisławska I (2016) The effect of breed and the feeding system on the activity of glycosidases in cow’s milk. Anim Sci Paper Rep 34:41–52

    Google Scholar 

  • Karav S, Le Parc A, de Moura Bell JMLN, Frese SA, Kirmiz N, Block DE, Barile D, Mills DA (2016) Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated bifidobacteria. Appl Environ Microbiol 82(12):3622–3630

    Google Scholar 

  • Kawasaki Y, Isoda H, Shinmoto H, Tanimoto M, Dosako SI, Idota T, Nakajima I (1993) Inhibition by κ-casein glycomacropeptide and lactoferrin of influenza virus hemagglutination. Biosci Biotechnol Biochem 57(7):1214–1215

    Google Scholar 

  • Kitchen BJ (1976) Enzymatic methods for estimation of the somatic cell count in bovine milk. I. Development of assay techniques and a study of their usefulness in evaluating the somatic cell content of milk. J Dairy Res 43:251–258

    Article  CAS  Google Scholar 

  • Kitchen BJ, Mitleton G, Salmon M (1978) Bovine milk N-acetylb-D-glucosaminidase and its significance in the detection of abnormal udder secretions. J Dairy Res 45:15–20

    Article  CAS  Google Scholar 

  • Kobata A (2013) Exo- and endoglycosidases revisited. Proc Jpn Acad Ser B 89(3):97–117

    Google Scholar 

  • Kreuß M, Strixner T, Kulozik U (2009) The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide. Food Hydrocoll 23(7):1818–1826

    Google Scholar 

  • Kaartinen L, Kuosa PL, Veijalainen K, Sandholm M (1988) Compartmentalization of milk N-acetyl-β-D-glucosaminidase (NAGase). J Vet Med 35:408–414

    Article  CAS  Google Scholar 

  • Larsen T, Aulrich K (2012) Optimizing the fluorometric beta-glucuronidase assay in ruminant milk for a more precise determination of mastitis. J Dairy Res 79(1):7–15

    Google Scholar 

  • Le Maréchal C, Thiéry R, Vautor E, Le Loir Y (2011) Mastitis impact on technological properties of milk and quality of milk products—a review. Dairy Sci Technol 91(3):247–282

    Google Scholar 

  • Leonardi M, Gerbault P, Thomas MG, Burger J (2012) The evolution of lactase persistence in Europe. A synthesis of archaeological and genetic evidence. Int Dairy J 22(2):88–97

    Google Scholar 

  • Manso MA, López-Fandiño R (2004) κ-casein macropeptides from cheese whey: physicochemical, biological, nutritional, and technological features for possible uses. Food Rev Intl 20(4):329–355

    Google Scholar 

  • McJarrow P, van Amelsfort-Schoonbeek J (2004) Bovine sialyl oligosaccharides: seasonal variations in their concentrations in milk, and a comparison of the colostrums of Jersey and Friesian cows. Int Dairy J 14(7):571–579

    Google Scholar 

  • McKellar RC, Piyasena P (2000) Predictive modelling of inactivation of bovine milk α-L-fucosidase in a high-temperature short-time pasteurizer. Int Dairy J 10:1–6

    Article  CAS  Google Scholar 

  • Mellors A (1968) b-N-acetylglucosaminase in bovine milk. Can J Biochem 46:451–455

    Article  CAS  Google Scholar 

  • Mellors A, Harwalkar VR (1968) Glycosidases in bovine milk: α-mannosidase and its inhibition by zwitterions. Can J Biochem 46:1351–1356

    Article  CAS  Google Scholar 

  • Mittal SB, Newell G, Hourigan JA, Zadow JG (1991) The effect of protease contamination in lactase on the flavor of lactose-hydrolyzed milks. Aust J Dairy Technol 46:46–47

    CAS  Google Scholar 

  • Naranjo GB, Pereyra Gonzales AS, Leiva GE, Malec LS (2013) The kinetics of Maillard reaction in lactose-hydrolysed milk powder and related systems containing carbohydrate mixtures. Food Chem 141(4):3790–3795

    Google Scholar 

  • Newburg DS, Chaturvedi P (1992) Neutral glycolipids of human and bovine milk. Lipids 27:923–927

    Article  CAS  Google Scholar 

  • Nielsen SD, Jansson T, Le TT, Jensen S, Eggers N, Rauh V, Sundekilde UK, Sørensen J, Andersen HJ, Bertram HC, Larsen LB (2017) Correlation between sensory properties and peptides derived from hydrolysed-lactose UHT milk during storage. Int Dairy J 68:23–31

    Google Scholar 

  • Nielsen SD, Zhao D, Le TT, Rauh V, Sørensen J, Andersen HJ, Larsen LB (2018) Proteolytic side-activity of lactase preparations. Int Dairy J 78:159–168

    Google Scholar 

  • Nwosu CC, Aldredge DL, Lee H, Lerno LA, Zivkovic AM, German JB, Lebrilla CB (2012) Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J Proteome Res 11(5):2912–2924

    Google Scholar 

  • Nwosu CC, Strum JS, An HJ, Lebrilla CB (2010) Enhanced detection and identification of glycopeptides in negative ion mode mass spectrometry. Anal Chem 82:9654–9662

    Google Scholar 

  • O’Riordan N, Kane M, Joshi L, Hickey RM (2014) Glycosidase activities in bovine milk over lactation. Int Dairy J 35(2):116–121

    Google Scholar 

  • Oliszewski R, Núnes de Kairús MS, González de Elias SN, Oliver G (2002) Assessment of b-glucuronidase levels in goat’s milk as an indicator of mastitis: comparison with other mastitis detection methods. J Food Prot 65:864–866

    Article  CAS  Google Scholar 

  • Parker P, Sando L, Pearson R, Kongsuwan K, Tellam RL, Smith S (2010) Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconj J 27(1):89–97

    Google Scholar 

  • Perdigon G, Medici M, Cecilia M, Nader de Macias ME, Haedo R, Oliver G, Peche de Ruiz Holgado AA (1986) Significance of the presence of bovine milk β-glucuronidase in mastitis detection. J Dairy Sci 69:27–31

    Article  CAS  Google Scholar 

  • Pyörälä S (2003) Indicators of inflammation in the diagnosis of mastitis. Vet Res 34(5):565–578

    Google Scholar 

  • Robinson RC, Poulsen NA, Colet E, Duchene C, Larsen LB, Barile D (2019) Profiling of aminoxyTMT-labeled bovine milk oligosaccharides reveals substantial variation in oligosaccharide abundance between dairy cattle breeds. Sci Rep 9(1):5465

    Google Scholar 

  • Rombaut R, Dewettinck K (2006) Properties, analysis and purification of milk polar lipids. Int Dairy J 16(11):1362–1373

    Google Scholar 

  • Saito T, Itoh T (1992) Variations and distribution of O-glycosidically linked sugar chains in bovine κ-casein. J Dairy Sci 75:1768–1774

    Article  CAS  Google Scholar 

  • Sánchez-Juanes F, Alonso JM, Zancada L, Hueso P (2009) Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int Dairy J 19(5):273–278

    Google Scholar 

  • Sela DA (2011) Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol 149:58–64

    Article  CAS  Google Scholar 

  • Sellinger OZ, Beaufay H, Jacques P, Doyen A, de Duve C (1960) Tissue fractionation studies. 15. Intracellular distribution and properties of b-N-acetylglucosaminidase and b-galactosidase in rat liver. Biochem J 74:450–456

    Article  CAS  Google Scholar 

  • Simon PM, Goode PL, Mobasseri A, Zopf D (1997) Inhibition of helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 65:750–757

    Article  CAS  Google Scholar 

  • Spik G, Coddeville B, Mazurier J, Bourne Y, Cambillaut C (1994) Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv Exp Med Biol 357:21–32

    Article  CAS  Google Scholar 

  • Sriwilaijaroen N, Kondo S, Yagi H, Hiramatsu H, Nakakita S, Yamada K, Ito H, Hirabayashi J, Narimatsu H, Kato K, Suzuki Y (2012) Bovine Milk whey for preparation of natural N-glycans: structural and quantitative analysis. Open Glycosci 5:41–50

    Article  CAS  Google Scholar 

  • Sundekilde UK, Frederiksen PD, Clausen MR, Larsen LB, Bertram HC (2011) Relationship between the metabolite profile and technological properties of bovine milk from two dairy breeds elucidated by NMR-based metabolomics. J Agric Food Chem 59(13):7360–7367

    Google Scholar 

  • Sunds AV, Poulsen NA, Larsen LB (2019) Short communication: application of proteomics for characterization of caseinomacropeptide isoforms before and after desialidation. J Dairy Sci 102(10):8696–8703. Accepted paper

    Article  CAS  Google Scholar 

  • Svanborg S, Johansen A-G, Abrahamsen RK, Schüller RB, Skeie SB (2016) Caseinomacropeptide influences the functional properties of a whey protein concentrate. Int Dairy J 60:14–23

    Google Scholar 

  • Saad AM, Östensson K (1990) Flow cytometric studies on the alteration of leucocyte populations in blood and milk during endotoxin-induced mastitis in cows. Am J Vet Res 51:1603–1607

    CAS  PubMed  Google Scholar 

  • Takimori S, Shimaoka H, Furukawa J, Yamashita T, Amano M, Fujitani N, Takegawa Y, Hammarstrom L, Kacskovics I, Shinohara Y, Nishimura S (2011) Alteration of the N-glycome of bovine milk glycoproteins during early lactation. FEBS J 278(19):3769–3781

    Google Scholar 

  • Tao N, DePeters EJ, Freeman S, German JB, Grimm R, Lebrilla CB (2008) Bovine milk glycome. J Dairy Sci 91(10):3768–3778

    Google Scholar 

  • Troise AD, Bandini E, De Donno R, Meijer G, Trezzi M, Fogliano V (2016) The quality of low lactose milk is affected by the side proteolytic activity of the lactase used in the production process. Food Res Int 89:514–525

    Google Scholar 

  • Urakami H, Saeki M, Watanabe Y, Kawamura R, Nishizawa S, Suzuki Y, Watanabe A, Ajisaka K (2018) Isolation and assessment of acidic and neutral oligosaccharides from goat milk and bovine colostrum for use as ingredients of infant formulae. Int Dairy J 83:1–9

    Google Scholar 

  • Urashima T, Taufik E, Fukuda K, Asakuma S (2013) Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci Biotechnol Biochem 77(3):455–466

    Google Scholar 

  • van Leeuwen SS, Schoemaker RJW, Timmer CJAM, Kamerling JP, Dijkhuizen L (2012) N- and O-glycosylation of a commercial bovine whey protein product. J Agric Food Chem 60(51):12553–12564

    Google Scholar 

  • Von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55:167–193

    Article  Google Scholar 

  • Wang B, Brand-Miller J, McVeagh P, Petocz P (2001) Concentration and distribution of sialic acid in human milk and infant formulas. Am J Clin Nutr 74:510–515

    Article  CAS  Google Scholar 

  • Wickramasinghe S, Hua S, Rincon G, Islas-Trejo A, German JB, Lebrilla CB, Medrano JF (2011) Transcriptome profiling of bovine milk oligosaccharide metabolism genes using RNA-sequencing. PLoS One 6(4):e18895

    Google Scholar 

  • Wiederschain GY, Newburg DS (2001a) Glycoconjugate stability in human milk: glycosidase activities and sugar release. J Nutr Biochem 12:559–564

    Article  CAS  Google Scholar 

  • Wiederschain GY, Newburg DS (2001b) Glycosidase activities and sugar release in human milk. Adv Exp Med Biol 501:573–577

    Article  Google Scholar 

  • Yuan L, Sadiq FA, Liu TJ, Li Y, Gu JS, Yang HY, He GQ (2018) Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. J Zhejiang Univ Sci B 19(8):630–642

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Aagaard Poulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunds, A.V., Nielsen, S.DH., Larsen, L.B., Poulsen, N.A. (2021). Milk and Other Glycosidases. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_7

Download citation

Publish with us

Policies and ethics